BIOMARKERS OF PHARMACOLOGICAL AND CLINICAL ACTIVITY OF IPH4102, FIRST-IN-CLASS HUMANIZED ANTI-KIR3DL2 MAB, IN A PHASE I STUDY IN PATIENTS WITH RELAPSED/REFRACTORY CTCL

M. BATTISTELLA¹, A. MARIE-CARDINE¹,8 C. PATUREL⁹, C. BONNAFOUS³, N. THONNART⁸, M. KHODADOUST², A. WIDEMANN⁹, M. BAGOT¹,8 Y. H. KIM², P. PORCU³, C. RAM-WOLFF¹,8, B. WILLIAM⁴, S. MATHIEU¹, M. VERMEER⁵, S. WHITTAKER⁶, A. BENSUSSAN¹,8, A. DUJARDIN⁸, C. PAIVA⁹, K. PILZ⁹ & H. SICARD⁹

¹HÔPITAL SAINT LOUIS, PARIS, FRANCE
²STANFORD CANCER INSTITUTE - PALO ALTO, CA, USA
³S. KIMMEL CANCER CENTER, JEFFERSON, PHILADELPHIA, PA, USA
⁴OHIO STATE UNIVERSITY – COLUMBUS, OH, USA
⁵LUMC - LEIDEN, THE NETHERLANDS
⁶GUY’S AND ST THOMAS’ HOSPITAL – LONDON, UK
⁷MD ANDERSON CANCER CENTER – HOUSTON, TX, USA
⁸INSERM U976, HÔPITAL ST LOUIS, PARIS, FRANCE
⁹INNATE PHARMA, MARSEILLE, FRANCE
KIR3DL2 IS A THERAPEUTIC TARGET IN CTCL

- KIR3DL2 belongs to the Killer Ig-like Receptor family of receptors that modulate NK and T cell activity
- KIR3DL2 is expressed on ~30% of normal NK and <10% normal T cells
- KIR3DL2 is expressed on CTCL cells (skin lesions and blood aberrant cells)
 > Irrespective of disease clinical stage
 > With a higher prevalence in Sézary syndrome (SS), CD30+ LPD and Mycosis fungoides with large-cell transformation
- KIR3DL2 may have prognostic significance in SS
- IPH4102 is an anti-KIR3DL2 IgG1 antibody that was selected and designed to specifically target KIR3DL2 and deplete KIR3DL2+ cancer cells

IPH4102-101 PHASE 1 STUDY DESIGN AND OBJECTIVES

- **Dose-escalation** (10 dose levels – accelerated 3+3 design) followed by cohort expansion
- **Primary objective**: determination of MTD and RP2D, overall safety
- **Secondary objectives**: clinical activity, PK/immunogenicity
- **Exploratory objectives**: changes in KIR3DL2+ cells in involved compartments, NK cell function pre-dose
- **Key inclusion criteria**:
 - Any CTCL subtype, ≥ 2 prior lines of systemic therapy, if MF/SS stage ≥ IB
 - > 5% aberrant cells KIR3DL2pos in skin or blood
 - Treatment until progression or unacceptable toxicity
- **Intra-patient dose-escalation allowed after W5**

Diagram:
- Dose-escalation (doses in mg/kg, n patients/dose)
- Cohort expansion in subtypes of CTCL
- RP2D for cohorts

Table:

<table>
<thead>
<tr>
<th>Cohort</th>
<th>Dose (mg/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0.0001</td>
<td>0.01</td>
</tr>
<tr>
<td>0.001</td>
<td>0.05</td>
</tr>
<tr>
<td>0.2</td>
<td>3</td>
</tr>
<tr>
<td>0.75</td>
<td>3</td>
</tr>
<tr>
<td>1.5</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>6</td>
<td>3</td>
</tr>
<tr>
<td>10</td>
<td>3</td>
</tr>
</tbody>
</table>

Schedules:
- 4 admin. weekly
- W5
- 10 admin. Q2W
- W26
- N admin. Q4W
METHODS FOR BIOMARKER ANALYSIS

• Immuno-monitoring in blood by flow cytometry:
 > Proportion of KIR3DL2 receptor occupancy by IPH4102
 > Absolute counts of aberrant cells (CD26⁻ and/or CD7⁻ CD4 T cells), clonal CD4 T cells (defined by their Vβ chain), KIR3DL2⁺ CD4 T cells
 > KIR3DL2⁺ “normal” lymphocytes (NK, CD8 T cells)

• Ex vivo function of NK cells at baseline in autologous ADCC assay (SS patients)

• Immuno-histochemistry (IHC) staining of KIR3DL2-expressing cells and other immune cell subsets (CD4, CD8,…) in skin biopsies
KIR3DL2 IS 100% OCCUPIED BY IPH4102 AT DOSES ≥ 0.75 MG/KG

KIR3DL2 occupancy on blood CD4+ T cells
1 week after the 1st administration of IPH4102

Available anti-KIR3DL2 clones:
• 2B12, same as IPH4102
• 13E4, binding to a different epitope than 2B12, to determine the “100% level”

Only applicable to SS patients with > 5% of KIR3DL2 on CD4+ T cells
BLOOD ABERRANT, CLONAL AND KIR3DL2⁺ CD4⁺ T CELLS ARE DEPLETED DURING IPH4102 TREATMENT

Aberrant cells

Clonal cells

KIR3DL2⁺ CD4⁺ T cells

Starting dose color code:
- 0.0001 mg/kg
- 0.001 mg/kg
- 0.05 mg/kg
- 0.2 mg/kg
- 0.75 mg/kg
- 1.5 mg/kg
- 3 mg/kg
- 6 mg/kg
- 10 mg/kg

Wee k s a f te r t he 1 st a d m i n i s t r a t i o n
N b e r o f V B + C D 4 + c e l l s / µ L

Wee k s a f te r t he 1 st a d m i n i s t r a t i o n
N b e r o f K I R 3 D L 2 + C D 4 + T c e l l s / µ L

(n = 20 SS)
(n = 11 SS)
(n = 20 SS)
ABERRANT BLOOD CELLS CHANGES FROM BASELINE TEND TO BE RELATED TO GLOBAL CLINICAL RESPONSE

KIR3DL2+ CD4+ T cells

versus best Global Response

Aberrant CD7- and/or CD26- CD4+ T cells

versus best Global Response

Best global response: CR PR SD PD (n = 20 SS)
SS PATIENT NK CELLS ARE FUNCTIONAL EX VIVO AT BASELINE AND NOT DEPLETED IN BLOOD DURING TREATMENT

Blood NK cells absolute counts

(n = 20 SS)
PERCENTAGE OF KIR3DL2+ CELLS CHANGES FROM BASELINE IN SKIN BIOPSIES TEND TO BE RELATED TO CLINICAL RESPONSE

Relation to response in skin at W14

Relation to best Global Response

SCR: 52% KIR3DL2+ cells

Week 14: 0.2%

1 plot / biopsy, 1 or 2 biopsies / patient – n = 22 patients - percentage of KIR3DL2+ cells among mononuclear cells
HIGHER CD8\(^+\) CELLS AT SCREENING IN LESIONS TEND TO BE RELATED TO GLOBAL CLINICAL RESPONSE

Best global response: CR, PR, SD, PD

1 plot / biopsy, 1 or 2 biopsies / patient – n = 22 patients - percentage of CD4 or CD8\(^+\) cells among mononuclear cells
PATIENTS WITH CR/PR SHOW AN INCREASE OF %CD8\(^+\) IN THE SKIN

Variation of %CD8\(^+\) cells in skin biopsies during treatment versus best Global Response

15% of mononuclear cells: 560 cells/mm\(^2\)

30% of mononuclear cells: 805 cells/mm\(^2\)

30% of mononuclear cells: 713 cells/mm\(^2\)

Best global response: CR, PR, SD, PD
ANALYSIS OF CD163⁺ CELL CHANGES IN THE TUMOR MICROENVIRONMENT DURING IPH4102 TREATMENT

%CD163⁺ within 30 µm of CD4⁺ cells in skin biopsies versus best Global Response

CD163⁺ average distance (µm) to CD4⁺ cells in skin biopsies versus best Global Response

HALO software analysis
CONCLUSIONS AND PERSPECTIVES

• IPH4102 was evaluated in a dose-ranging first-in-man Phase 1 trial in relapsed advanced CTCL patients and was found safe and clinically active across all doses tested (see Bagot et al abstract O-53)
• KIR3DL2 full occupancy on blood CD4 T cells by IPH4102 is achieved at doses ≥ 0.75 mg/kg
• Sézary patient NK cells are functional pre-dose and are not decreased during treatment
• IPH4102 is pharmacologically active at all dose-levels tested:
 > KIR3DL2+ cells are depleted in blood, similarly to aberrant and clonal CD4 T cells
 > KIR3DL2+ cells are depleted in skin lesions
• Some biomarkers in blood and skin tend to be associated with global clinical response
 > Decrease in KIR3DL2+ cells in blood and skin during treatment
 > Higher CD8+ cells in lesions at baseline and increase during treatment
• These results deserve to be confirmed in the cohort-expansion part of the study, where additional patients will be treated at the RP2D
ACKNOWLEDGEMENTS

Dpts of Dermatology & Pathology
St Louis Hospital (Paris, France)
Martine Bagot
Caroline Ram-Wolff
Steve Mathieu
Maxime Battistella

INSERM Unit 976 (Paris, France)
Anne Marie-Cardine
Nicolas Thonnart
Armand Bensussan

Histalim (Montpellier, France)
Laurence Maunier

Leiden University Medical Center
(Leiden, Netherlands)
Maarten Vermeer

Guy’s and St Thomas’ Hospital
(London, UK)
Sean Whittaker

Stanford Cancer Institute (CA, USA)
Youn H. Kim
Michael Khodadoust

Ohio State University (OH, USA)
Basem William

SKCC at Jefferson, Philadelphia (PA, USA)
Pierluigi Porcu

MDACC (TX, USA)
Madeleine Duvic

Innate Pharma (Marseille, France)
Korinna Pilz
Carine Paturel
Agnès Widemann
Romain Remark
Hélène Sicard
Christine Paiva
Cécile Bonnafous
Arnaud Dujardin
Agnès Représa

All our patients and their families...