First-in-Human Study of the CD123 NK Cell Engager SAR443579 in Relapsed or Refractory Acute Lymphoblastic Leukemia or High-Risk Myelodysplasia: Updated Safety, Efficacy, Pharmacokinetics and Pharmacodynamics

Ashish Bajel,¹ Sylvain Garciaz,² Pinkal Desai,³ Gerwin A. Huls,⁴ Abhishek Maiti,⁵ Mojca Jongen-Lavrencic,6 Nicolas Boissel,⁵ Stephane De Botton,8 David C. deLeeuw,9 Shaun A. Fleming,¹0 C. Michel Zwaan,¹¹ Martha L. Arellano,¹² David Avigan,¹³ Jennifer N. Saultz,¹⁴ loannis Mantzaris,¹⁵ Kyle Jensen,¹⁰ Timothy Wagenaar,¹⁰ Gu Mi,¹⁰ Samira Ziti-Ljajic,¹ⁿ Dobrin Draganov,¹⁰ C. Michel Zwaan,¹¹ Martha L. Arellano,¹² David Avigan,¹³ Jennifer N. Saultz,¹⁴ loannis Mantzaris,¹⁵ Kyle Jensen,¹⁰ Timothy Wagenaar,¹⁰ Gu Mi,¹⁰ Samira Ziti-Ljajic,¹ⁿ Dobrin Draganov,¹⁰ C. Michel Zwaan,¹¹ Martha L. Arellano,¹² David Avigan,¹³ Jennifer N. Saultz,¹⁴ loannis Mantzaris,¹⁵ Kyle Jensen,¹⁰ Timothy Wagenaar,¹⁰ Gu Mi,¹⁰ Samira Ziti-Ljajic,¹ⁿ Dobrin Draganov,¹⁰ C. Michel Zwaan,¹¹ Martha L. Arellano,¹² David Avigan,¹³ Jennifer N. Saultz,¹⁴ loannis Mantzaris,¹⁵ Kyle Jensen,¹⁰ Timothy Wagenaar,¹⁰ Gu Mi,¹⁰ Samira Ziti-Ljajic,¹ⁿ Dobrin Draganov,¹⁰ C. Michel Zwaan,¹¹ Martha L. Arellano,¹² David Avigan,¹³ Jennifer N. Saultz,¹⁴ loannis Mantzaris,¹⁵ Kyle Jensen,¹⁰ Timothy Wagenaar,¹⁰ Gu Mi,¹⁰ Samira Ziti-Ljajic,¹ⁿ Dobrin Draganov,¹⁰ C. Michel Zwaan,¹¹ Martha L. Arellano,¹⁰ Samira Ziti-Ljajic,¹ⁿ Dobrin Draganov,¹⁰ C. Michel Zwaan,¹⁰ Samira Ziti-Ljajic,¹ⁿ Dobrin Draganov,¹⁰ C. Michel Zwaan,¹⁰ C. Michel Zwaan,²⁰ C. Michel Zwaan,² C. Michel Zwaan, Giovanni Abbadessa, 16 Anthony Selwyn Stein, 18

stransfers and Royal Melbourne Hospital, Melbourne, Netherlands; Melbourne, Rotterdam, Netherlands; Melical Center, Rotterdam, Netherlands; Medical Center, Rotterdam, N { Amsterdam, Netherlands; 10 The Alfred Hospital, Melbourne, Australia; 14 Oregon Health & Science University, Atlanta, GA, USA; 15 Montefiore Medical Center, Bronx, NY, USA; 16 Sanofi, Cambridge, MA, USA; 18 Beth Israel Deaconess Medical Center, Bronx, NY, USA; 18 City of Hope National Medical Center, Bronx, NY, USA; 18 City of Hope National Medical Center, Bronx, NY, USA; 18 City of Hope National Medical Center, Bronx, NY, USA; 18 City of Hope National Medical Center, Bronx, NY, USA; 18 City of Hope National Medical Center, Bronx, NY, USA; 19 City of Hope Na

BACKGROUND

- Cluster of differentiation 123 (CD123) is widely expressed in hematological malignancies¹⁻⁴
- T cell engagers targeting CD123 have displayed some preliminary clinical efficacy; however, they have been associated with safety concerns including cytokine release syndrome and neurotoxicity⁵
- SAR443579 (SAR′579) is a trifunctional anti-CD123 NKp46xCD16 natural killer cell engager (NKCE) targeting the CD123 antigen and co-engaging NKp46 and CD16a on natural killer (NK) cells triggering tumor cell death (Figure 1)
- TCD17197 (NCT05086315) is an ongoing first-in-human phase 1/2 open-label, multicenter trial evaluating SAR'579 in patients with relapsed or refractory acute myeloid leukemia (R/R AML), B-cell acute lymphoblastic leukemia (B-ALL) or high-risk myelodysplasia (HR-MDS)
- Early clinical results demonstrated that SAR'579 was well tolerated up to 3000 μg/kg/infusion once daily (QW) with no dose-limiting toxicities; clinical remissions were identified at a maximal target dose of 1000 µg/kg/infusion^{6,7}
- Here we present updated results from TCD17197 on SAR'579 doses ranging from 10 μg/kg through 6000 μg/kg at a data cutoff of October 23, 2023

Figure 1: Mechanism of Action

CD, cluster of differentiation; NK, natural killer

METHODS

Study Design

- Patients received SAR'579 intravenously twice weekly or once weekly (QW), depending on dose level (DL), for the first 2 weeks of cycle 1, and QW for rest of the induction cycles (Figure 2)
- Patients received approximately three 28-day induction cycles and, upon achieving a complete remission (CR) or incomplete hematologic recovery (CRi) per modified International Working Group criteria,8 could transition to a 56-day maintenance period with dosing approximately every 29 days if not a candidate for stem cell transplantation
- Peripheral blood (to determine plasma concentrations and immunogenicity) and bone marrow samples were collected for pharmacokinetic/pharmacodynamic (PK/PD) analysis during each induction cycle
- Primary objectives: safety/tolerability and preliminary anti-leukemic activity (composite complete remission [CRc]=CR+CRi)

2. First in Human Dass Fassistian and Francis

Figure 2: First-in-Human Dose Escalation and Expansior	n
Dose Escalation	Dose Expansion
Determine maximum tolerated or administered dose based on incidence of dose-limiting toxicity in cycle 1 (28-day cycles)	Determination of CRc (CR +CRi)
R/R-AML, HR-MDS, B-ALL	Cohort A – Primary induction failure & early relapse AML
8 initial dose levels (Bayesian Logistic Regression Model)	Cohort B – Late relapse AML
IV Dose in ug/kg DI 1 DI 2 DI 3	DI4 DI5 DI6 DI7 DI8

IV Dose in µg/kg	DL1	DL2	DL3	DL4	DL5	DL6	DL7	DL8
Day 1	10	30	100	300	1000	3000	6000	1000
Day 4	30	100	300	/	/	/	/	/
Day 8	100	300	1000	100	3000	3000	6000	1000
Day 11	100	300	/	/	/	/	/	/
Day 15	100	300	1000	1000	3000	3000	6000	1000
Day 22	100	300	1000	1000	3000	3000	6000	1000

Additional induction cycles (28 days) were allowed using Day 22 dose (QW)

Key Eligibility Criteria

- Age ≥12 years
- Eastern Cooperative Oncology Group ≤2 (age ≥18 years), Karnofsky ≥50% (age 16–17 years), or Lanksy ≥50% (age <16 years)
- Prior transplant allowed if relapse >3 months and off immunosuppression and no graft-versus-host disease
- Steroids allowed if ≤10 mg/day of oral prednisone or equivalent (inhaler, nasal spray, ophthalmic solution exceptions)
- Confirmed CD123+ for HR-MDS and

AML, acute myeloid leukemia; B-ALL, B-cell acute lymphoblastic leukemia; CD123, cluster of differentiation 123; CR, complete remission; CRc, composite CR; CRi, CR with incomplete hematological recovery; DL, dose level;

 No active central nervous system leukemia

Poster presented at the 65th Annual Meeting of the American Society of Hematology (ASH), San Diego, CA, December 9–12, 2023

- No prior anti-CD123 directed agents
 - No tocilizumab within 14 days of investigational medicinal product
 - White blood cell count (WBC) <15x10⁹/L

- The most common TEAEs included infusion-related reactions (67.4%) and constipation (25.6%)
- Grade 5 TEAEs included cholestasis, nontraumatic intracranial hemorrhage, lobular pneumonia, lung sepsis, and urosepsis; all grade 5 events were unrelated to SAR'579

RESULTS

- A total of 43 patients were included in this analysis; of those, 3 (7%) remain on treatment and 40 (93%) have discontinued treatment (adverse events, n=2; progressive disease, n=31; patient withdrawal, n=3; other, n=4)
- Patients received a median of 2.0 cycles (range: 1–11) of treatment with a median treatment duration of 7.9 weeks (range: 1–65) **Table 1: Baseline Characteristics**

Characteristic	N=43
Age, median (range), years	68 (21–81)
18–65, n (%)	19 (44.2)
66–75, n (%)	17 (39.5)
>75, n (%)	7 (16.3)
Female, n (%)	15 (34.9)
ECOG PS, n (%)	
0	8 (18.6)
1	33 (76.7)
2	2 (4.7)
AML diagnosis, n (%)	42 (97.7)
HR-MDS diagnosis, n (%)	1 (2.3)

Characteristic	N=43		
WBC at baseline,* median (range), 10°/L	2.8 (0-12)		
Blast count in blood,* median (range), 10 ⁹ /L	0.8 (0-29)		
Blast proportion in bone marrow,† %, median (range)	50.0 (3-90)		
Extramedullary disease,* n (%)	7 (16.7)		
Prior lines of therapy, median (range)	2.0 (1–10)		
1, n (%)	16 (37.2)		
2, n (%)	11 (25.6)		
≥3, n (%)	16 (37.2)		
Prior HSCT, n (%)	13 (30.2)		
Prior venetoclax, n (%)	36 (83.7)		

*Reported in 42 patients. †Reported in 39 patients. AML, acute lymphoblastic leukemia; ECOG PS, Eastern Cooperative Oncology Group performance status; HR-MDS, high-risk myelodysplasia; HSCT, hematopoietic stem cell transplantation; WBC, white blood cells.

Figure 3: Individual Patient Responses per Investigator

Table 2: Response per Investigator (per Modified IWG criteria8)

	DL1 (n=3)	DL2 (n=4)	DL3 (n=4)	DL4 (n=4)	DL5 (n=4)	DL6 (n=8)	DL7 (n=8)	DL8 (n=7)	All (N=42)
Maximum target dose (μg/kg)	100	300	1000	1000	3000	3000	6000	1000	_
CRc, n (%)	0	0	2 (50.0)*	1 (25.0)	0	0	0	2 (28.6)	5 (11.9)
*1 CRi CR, complete remission; CRc, composite CR (CR+CRi); CRi,	CR with incomplete h	ematological red	covery; DL, dose leve	el; IWG, Internation	al Working Group				

- CR/CRi was reported in 5 of 15 (33.3%) patients with R/R AML treated at a maximal target dose of 1000 μg/kg/infusion; 3 patients with CR are still receiving treatment
- The median duration of response was not estimable; maximum time on treatment was 65 weeks
- 4 responders had prior venetoclax and 2 had prior HSCT

Table 3: Summary of Adverse Events

n (%)	DL1 (n=3)	DL2 (n=4)	DL3 (n=4)	DL4 (n=4)	DL5 (n=4)	DL6 (n=8)	DL7 (n=8)	DL8 (n=8)	AII (N=43)
1		` '			, ,		• •		
e-limiting toxicities	0	0	0	0	0	0	0	0	0
Es (all grades)	3 (100)	4 (100)	4 (100)	4 (100)	4 (100)	7 (87.5)	8 (100.0)	8 (100.0)	42 (97.7)
ade ≥3	3 (100)	3 (75.0)	3 (75.0)	3 (75.0)	3 (75.0)	5 (62.5)	3 (37.5)	3 (37.5)	26 (60.5)
ade 5	0	1 (25.0)	1 (25.0)	1 (25.0)	1 (25.0)	0	1 (12.5)	0	5 (11.6)
Es (all grades)	2 (66.7)	4 (100)	2 (50.0)	4 (100)	3 (75.0)	4 (50.0)	6 (75.0)	7 (87.5)	32 (74.4)*
atment-emergent SAEs	2 (66.7)	3 (75.0)	3 (75.0)	3 (75.0)	3 (75.0)	5 (62.5)	2 (25.0)	3 (37.5)	24 (55.8)
atment-related SAEs	0	0	2 (50.0)	0	0	0	0	0	2 (4.7)
atment-related SAEs ≥ 3 TRAEs were reported in 2 patients ≥ 3 treatment-related SAEs were reported in		0	2 (50.0)	0	0		0	0 0	0 0 0

DL, dose level; SAE, serious adverse event; TEAE, treatment-emergent adverse event; TRAE, treatment-related adverse event.

- No dose-limiting toxicities were reported up to the highest dose of 6000 μg/kg QW
- No TEAEs led to the permanent discontinuation of SAR'579

Table 4: TRAEs Reported in ≥4% of all Patients

n (%)	DL1 (n=3)	DL2 (n=4)	DL3 (n=4)	DL4 (n=4)	DL5 (n=4)	DL6 (n=8)	DL7 (n=8)	DL8 (n=8)	All Grade (N=43)	Grade ≥3 (N=43)
Infusion-related reaction	1 (33.3)	3 (75.0)	2 (50.0)	4 (100.0)	2 (50.0)	4 (50.0)	6 (75.0)	7 (87.5)	29 (67.4)	0
Cytokine release syndrome	0	0	0	1 (25.0)*	1 (25.0)*	0	0	0	2 (4.7)*	0
Decreased appetite	0	1 (25.0)	0	0	1 (25.0)	0	0	0	2 (4.7)	0
Diarrhea	1 (33.3)	1 (25.0)	0	0	0	0	0	0	2 (4.7)	0
Nausea	1 (33.3)	0	0	0	1 (25.0)	0	0	0	2 (4.7)	0
*Grade 1. Events are per patient (i.e. an individua	al may have multip	ole concurrent AEs	s).							

AE, adverse events; C, cycle; D, day; DL, dose level; TRAE, treatment-related adverse event

- The most common TRAE was infusion-related reaction, which generally occurred during cycle 1/day 1 and typically resolved within 1 hour utilizing temporary interruption of infusion and symptom management
- Grade ≥3 TRAEs were reported in 2 patients and included grade 3 diverticulitis in 1 patient in DL3 and grade 4 neutropenia in 1 patient in DL3
- There were no cases of immune effector cell-associated neurotoxicity syndrome

Figure 4: AML Blast Assessment

CR, complete remission; CRi, CR with incomplete hematological recovery; NE, non-evaluable; RD, resistant disease

Figure 5: Expression of (A) CD123 and (B) NKp46 in blood

- High variability was seen in baseline AML blasts (Figure 4)
- AML blast reductions were observed across all SAR'579 dose levels (Figure 4)
- CD123 expression was observed in all patients (Figure 5A)
- Robust expression (>50%) of NKp46 was seen in all patients (Figure 5B)

SUMMARY AND CONCLUSIONS

- SAR'579 was well tolerated up to doses of 6000 µg/kg QW with clinical benefit in patients with R/R AML; additional dose levels
- CR/CRi was reported in 33.3% of patients with R/R AML treated at a maximal target dose of 1000 µg/kg/infusion, and 3 responders
- The median duration of response was not estimable and is ongoing
- There were no dose-limiting toxicities
- Infusion-related reaction was the most common treatment-related adverse event
- The grade ≥3 TRAEs reported in the study were grade 3 diverticulitis and grade 4 neutropenia (in 1 patient each)
- Cytokine release syndrome (grade 1) was observed in 1 patient at DL4 and 1 at DL5
- There were no reports of immune effector cell-associated neurotoxicity syndrome • PD data are consistent with those previously reported; CD123 expression was observed in all patients
- SAR'579 continues to be investigated in hematological malignancies and was granted FDA Fast Track designation in May 2023
- 1. Lyapichev KA, et al. Clin Lymph Myel Leuk. 2021;21(4): e317-e320. 2. Patnaik MM, et al. Leuk Lymphoma. 2021;62(11):2568-86.
- 3. Uckun FM, et al. Front Aging. 2021;2:757276. 4. El Achi H, et al. Cancers (Basel). 2020;12(11):3087. 5. Uy GL, et al. *Blood*. 2021;137(6):751-62.

8. Cheson BD, et al. *J Clin Oncol*. 2003;21(24):4642-9.

REFERENCES:

6. Stein AS, et al, *J Clin Oncol*. 2023;41(suppl 16): 7005. 7. Jongen-Lavrencic M, et al. *Ann Oncol*. 2023;34(Suppl 2):8230

This study was sponsored by Sanofi. We thank the participating patients and their families, and the study centers and investigators for their

HR-MDS, high-risk myelodysplasia; IV, intravenous; QW, once weekly; R/R-AML, relapsed or refractory acute myeloid leukemia