Neil Smith Memorial Lecture
A novel targeted immunotherapy for CTCL
Martine Bagot
Department of Dermatology and Inserm U976, Hôpital Saint-Louis, Paris, France
martine.bagot@sls.aphp.fr

EORTC CLTF meeting, Torino, September 25-27, 2015
How can we find new efficient treatments for CTCL patients?

- Genomic studies to identify mutations and relevant targets within various signaling pathways
- Non specific immunotherapy: unleashing the immune system by releasing its negative regulatory checkpoints
- Specific immunotherapy: identifying tumor specific antigens to develop monoclonal antibodies specific for tumor antigens
Is it possible to separate reactive T cell clones from tumor T cell clones in CTCL skin and blood?
Is there evidence for Tumor Infiltrating Lymphocytes in CTCL?

Isolation of Tumor-Specific Cytotoxic CD4⁺ and CD4⁺CD8dim⁺ T-Cell Clones Infiltrating a Cutaneous T-Cell Lymphoma

Martine Bagot, Hamid Echchakir, Fathia Mami-Chouaib, Marie-Hélène Delfau-Larue, Dominique Charue, Alain Bernheim, Salem Chouaib, Laurence Boumsell and Armand Bensussan

Cutaneous Biology
Isolation of a CD8αα⁺ CD4⁻ tumour T-cell clone with cytotoxic activity from a CD4⁺ CD8⁻ cutaneous T-cell lymphoma

M.NIKOLOVA, H.ECHCHAKIR, J.WECHSLER, *L.BOUMSSELL, A.BENSUSSAN AND M.BAGOT
INSERM U448, Department of Dermatology, Hôpital Henri Mondor, 94010 Créteil, France
*Department of Pathology, Hôpital Henri Mondor, 94010 Créteil, France

Accepted for publication: 14 May 2002
Isolation of skin Tumor Infiltrating Lymphocytes in CTCL

Significance of circulating T-cell clones in Sézary syndrome

Nicolas Ortonne, Delphine Huet, Caroline Gaudez, Anne Marie-Cardine, Valérie Schiavon, Martine Bagot, Philippe Musette, and Armand Bensussan

Identification of malignant Sézary cells by T-cell receptor (TCR) clonality studies is routinely used for the diagnosis of Sézary syndrome, but T-cell clones expressed in a single patient have never been accurately characterized. We previously reported that CD158k expression delineates Sézary syndrome malignant cells, and, more recently, we identified vimentin at the surface membranes of Sézary cells and normal activated lymphocytes. In the present study, T-cell clones from 13 patients with Sézary syndrome were identified by immunoscopy and further characterized in the blood according to their TCR Vβ, CD158k, and vimentin cell-surface expression. We found in most patients a unique malignant T-cell clone that coexpressed CD158k and vimentin and that, when patients were tested, was also present in the skin. However, in some patients we detected the presence of a nonmalignant circulating clone expressing high amounts of vimentin and lacking CD158k. These results indicate that clonal expansion may originate from circulating malignant and nonmalignant CD4+ T cell populations in patients with Sézary syndrome. Identification of the malignant cells in Sézary syndrome cannot be achieved by T-cell clonality studies or by TCR Vβ monoclonal antibody (mAb) analysis alone; it also relies on CD158k phenotyping. (Blood. 2006;107:4030-4038)
Establishment of CTCL-derived long-term T cell lines

Functional characterization of an IL-7-dependent CD4⁺CD8αα⁺ Th3-type malignant cell line derived from a patient with a cutaneous T-cell lymphoma

Ewa Pospiechowska, Marline Bogit, Herold Echolsaks, Denis Martinet, Mohamed Ramez, Dominique Charon, Laurence Boumsell, and Armand Bensussan

CD3 of the functional rearranged T-cell receptor variable β region (TCR-β) transcript was sequenced in order to demonstrate for the first time the identity between a long-term cultured T-cell line derived from a cutaneous T-cell lymphoma (CTCL) patient and the malignant T-cell clone present in the blood. The patient’s peripheral blood lymphocyte-derived cultured T-cell line had a CD3⁺ CD4⁺ CD8α⁻ CD8αα⁺ CD28⁻ phenotype. It was named Pno and had been cultured for more than 1 year. Both fresh and long-term cultured tumor cells proliferated highly in response to interleukin-7 (IL-7), and exogenous IL-7 prevented Pno lymphocytes from apoptosis and maintained high levels of Bcl-2 expression. This unique malignant cloned lymphocyte line was further used to carry out functional studies. The results indicated that the CD95/TNF structures expressed by the Pno lymphocytes were functional because an immobilized anti-CD3 monoclonal antibody (mAb) or the combination of a soluble anti-CD3 mAb with submitogenic doses of phorbol 12-myristate 13-acetate induced a proliferative response. Further, the CD2 and CD28 co-receptors were functional because they were able to induce a strong proliferative response upon their specific stimulation. Finally, the Pno T cell line had a Th3-type cytokine profile because it produced high amounts of the immunosuppressor cytokine tumor growth factor-β1 (TGF-β1). This high production of TGF-β1 may inhibit antitumor specific responses in CTCL. (Blood. 2000;96:1056-1063)

Armand Bensussan
Member of International Human Cell Differentiation Molecules Council (CD nomenclature)
Test of more than 300 mAbs evaluated during the CDs’ workshops
CD4⁺ cutaneous T-cell lymphoma cells express the p140-killer cell immunoglobulin-like receptor

Martine Bagot, Alessandro Moretta, Simona Sivori, Roberto Biassoni, Claudia Cantoni, Cristina Bottino, Laurence Boumsell and Armand Bensussan

CD158k/KIR3DL2 Is a New Phenotypic Marker of Sezary Cells: Relevance for the Diagnosis and Follow-Up of Sezary Syndrome

*INSERM U448, Hôpital Henri Mondor, Créteil, France; †Department of Dermatology, Hôpital Henri Mondor, Créteil, France; ‡Department of Dermatology, Clermont-Ferrand, France; §Department of Dermatology, Rouen, France; †Dipartimento di Medicina Sperimentale, Università di Genova, Genova, Italy. French Cutaneous Lymphoma Study Group

KIR3DL2 is a phenotypic marker for Sézary cells

Clonal leukemic Sézary cells, defined by a single Vβ chain expression, are KIR3DL2+ in patient blood

Moins-Teisserenc H, J Invest Dermatol 2014
Leucocyte Receptor Cluster Organization

Homme Chr 19

Souris Chr 7
KIR Receptor Family

Adapted from Thielens et al., Curr Opin Immunol. 2012 Apr;24(2):239-45
The KIR3DL2/CD158k receptor
Identification of Sezary cells using either cytomorphology, flow-cytometry or TCR repertoire

Longitudinal evolution over a period of 18 and 12 months

Moins-Tesserenc H, J Invest Dermatol 2014
Analysis of CD158k+ T cells

Immunoscope analysis of Vβ families from CD158k+CD4+T cell and CD158k+T cells

Moins-Teisserenc et al, J Invest Dermatol, 2015
Phenotypic heterogeneity of CD158k+ T cells: memory and naive subsets

3 patients at initial diagnosis

Moins-Teissierenc et al, J Invest Dermatol, 2015
Phenotypic heterogeneity of T cells

CD45RA+
- CCR7+CD27+= T Naive
- CCR7-CD27-= T Effector Terminal

CD45RA-
- CCR7+CD27+= T Central Memory
- CCR7-CD27+= T Transitional Memory
- CCR7-CD27-= T Effector Memory
Phenotypic heterogeneity of CTCL

Sézary syndrome and mycosis fungoides arise from distinct T-cell subsets: a biologic rationale for their distinct clinical behaviors
James J. Campbell, Rachael A. Clark, Rei Watanabe and Thomas S. Kupper

Skin effector memory T cells do not recirculate and provide immune protection in alemtuzumab-treated CTCL patients
Rachael A. Clark¹,²,³, Rei Watanabe²,³, Jessica E. Teague¹, Christoph Schlapbach¹, Marianne C. Tawa³, Natalie Adams³, Andrew A. Dorosario³, Keri S. Chaney¹, Corey S. Cutler³, Nicole R. LeBoeuf¹, Joi B. Carter¹, David C. Fisher³, and Thomas S. Kupper¹,³,⁵
¹Department of Dermatology, Brigham and Women’s Hospital and Harvard Medical School, Boston MA

- Sezary patients:
 Central memory T-cells
 CD45RA-CCR7+CD27+

- Mycosis fungoides:
 Effector memory T cells
 CD45RA-CCR7-CD27-
Phenotype: Central memory: CD45RA-CCR7+CD27+
Phenotype Effector Terminal: CD45RA+CCR7-CD27-
Naive Phenotype: CD45RA+CCR7+CD27+
Flow cytometric analysis of CD3+CD4+KIR3DL2+ cells in a B1 erythrodermic mycosis fungoides

Hurabielle, J Invest Dermatol, 2015
Blood biomarkers in B0 and B1
Erythrodermic MF patients

Value of each blood biomarker (A.U.)

KIR3DL2 - B0
KIR3DL2 - B1
TWIST - B0
TWIST - B1
T-plastin - B0
T-plastin-B1
NKp46 - B0
NKp46 - B1

* Hurabielle, J Invest Dermatol, 2015
Sezary cells also express activating Killer cell Ig-like Receptors

Killer cell Ig-like receptors CD158a and CD158b display a coactivatory function, involving the c-Jun NH₂-terminal protein kinase signaling pathway, when expressed on malignant CD4⁺ T cells from a patient with Sézary syndrome.

Anne Marie-Cardine, Delphine Huet, Nicolas Ortonne, Natacha Remtoula, Sabine Le Gouvello, Martine Bagot and Armand Bensussan
Expression of other KIRs by Sezary cells

A

Circulating Sezary cells

Vβ8-Cβ

280

Vβ8-Jβ2.5

244

Cell line

Vβ8-Cβ

280

Vβ8-Jβ2.5

244

B

PBMCs

CD158k

Cell line

CD158a

CD158b

Marie-Cardine, Blood 2007
What is the function of CD158k/KIR3DL2 on CTCL cells?
KIR3DL2 is a coinhibitory receptor on Sézary syndrome malignant T cells that promotes resistance to activation-induced cell death

Nicolas Thonnart, Anne Caudron, Isabel Legaz, Martine Bagot, Armand Bensussan and Anne Marie-Cardine

Prolifération

<table>
<thead>
<tr>
<th>Condition</th>
<th>Tumoral T cell clone (Vβ9+ KIR3DL2+)</th>
<th>Non tumoral CD4+ T cells (Vβ9+ KIR3DL2+)</th>
</tr>
</thead>
<tbody>
<tr>
<td>NT</td>
<td>0.32</td>
<td>0.16</td>
</tr>
<tr>
<td>AZ158</td>
<td>0.23</td>
<td>0.98</td>
</tr>
<tr>
<td>CD3</td>
<td>33.9</td>
<td>91.0</td>
</tr>
<tr>
<td>CD3 + AZ158</td>
<td>2.6</td>
<td>95.8</td>
</tr>
</tbody>
</table>

AICD

<table>
<thead>
<tr>
<th>Condition</th>
<th>Tumoral T cell clone (Vβ14+ KIR3DL2+)</th>
<th>Non tumoral CD4+ T cells (Vβ14+ KIR3DL2+)</th>
</tr>
</thead>
<tbody>
<tr>
<td>NT</td>
<td>4.31</td>
<td>0.81</td>
</tr>
<tr>
<td>AZ158</td>
<td>4.49</td>
<td>1.5</td>
</tr>
<tr>
<td>CD3</td>
<td>50.9</td>
<td>22.1</td>
</tr>
<tr>
<td>CD3 + AZ158</td>
<td>28.6</td>
<td>21.4</td>
</tr>
</tbody>
</table>
Inhibition of the CD3-mediated activation upon CD158k recruitment

Sézary patient CD4+ cells

<table>
<thead>
<tr>
<th></th>
<th>P1</th>
<th>P2</th>
</tr>
</thead>
<tbody>
<tr>
<td>IP KIR3DL2</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>Lysates</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Blot anti-SHP-1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

NT CD3 + + mIgG AZ158

Phospho-Erk

Erk

Co-inhibitory receptor
A novel KIR-associated function: evidence that CpG DNA uptake and shuttling to early endosomes is mediated by KIR3DL2

Sivori et al, Blood 2010
Visualisation of KIR3DL2-ODN interactions by confocal microscopy

Co-internalisation of KIR3DL2 and CpG-ODN in endosomes where TLR9 is located

Sivori et al, Blood 2010
KIR3DL2/CpG ODN Interaction Mediates Sézary Syndrome Malignant T Cell Apoptosis

Bouchra Ghazi¹, Nicolas Thonnart¹,², Martine Bagot¹,²,³, Armand Bensussan¹,²,³ and Anne Marie-Cardine¹,²

Journal of Investigative Dermatology advance online publication, 14 August 2014; doi:10.1038/jid.2014.286
KIR3DL2-CpG ODN interactions induces Sézary cell death

Sézary Patient
Gate: TCRVβ8+ CD4+

Ghazi et al, J Invest Dermatol, 2014
What is the distribution of CD158k/KIR3DL2?
Sezary Syndrome
Sezary Syndrome
Transformed mycosis fungoides
KIR3DL2 is expressed in ~65% of all CTCL, irrespectively of disease subtype. Expression is more prominent in Sézary syndrome, transformed mycosis fungoides and CD30+ LPD (ALCL subtype).
Primary cutaneous anaplastic large cell lymphoma
KIR3DL2 expression in primary cutaneous anaplastic large-cell lymphoma
Strong KIR3DL2 expression by skin-infiltrating lymphocytes in pcALCL
KIR3DL2 is expressed by Mac2a and Mac2b ALCL lines

- Mac2a and Mac2b cell lines were derived from separate, rapidly growing skin tumors during disease progression, in a pcALCL patient.
- Mac1 was derived from circulating tumor cells in the blood of the same patient during an earlier indolent course of the disease.
Cutaneous γ/δ T-cell lymphoma
Extranodal NK/T lymphoma, nasal type
Primary cutaneous aggressive epidermotropic CD8+ T-cell lymphoma
Is there a rationale to develop an anti-KIR3DL2 Immunotherapy?
NK cells of Sezary patients are functional

Circulating Natural Killer Lymphocytes Are Potential Cytotoxic Effectors Against Autologous Malignant Cells in Sezary Syndrome Patients

Jean-David Bouaziz, Nicolas Ortonne, Jérôme Giustiniani, Valérie Schiavon, Delphine Huet, Martine Bagot, and Armand Bensussan*

*INSERM 669, Faculté de Médecine de Créteil 8, rue de général Sarrail, Créteil, France

Patients with advanced cutaneous T cell lymphoma (CTCL) exhibit profound defects in cell-mediated immunity. Although it has been suggested that Sezary syndrome (SS) patients have a decreased natural killer (NK) lymphocyte activity, nothing has been reported concerning the sensitivity of Sezary cells to NK lymphocyte-mediated cytotoxicity. Peripheral blood NK cells from healthy donors were tested against Sezary tumoral cell lines as well as against freshly isolated Sezary cells. Further, we studied their ability to exhibit antibody-dependent cell-mediated cytotoxicity using either the murine anti-CD158k/KIR3DL2 monoclonal antibody (moAb) AZ158 that specifically recognizes Sezary cells, or the anti-CD52 monoclonal antibody alemtuzumab. The results show that Sezary cell lines are susceptible to NK lymphocyte lysis. More importantly, we found that freshly isolated malignant cells are killed either by IL-2 activated allogeneic NK lymphocytes or when the tumor lymphocyte targets are incubated with an anti-MHC class I F(ab)2 antibody. Further, anti-KIR3DL2 and anti-CD52 moAb can enhance the NK lysis. Finally, we report that NK lymphocytes isolated from SS patients are potentially cytotoxic lymphocytes against autologous malignant Sezary cells. These findings indicate that antitumor-mediated NK lymphocyte cytotoxic activity can be triggered in patients with CTCL and raise the possibility of developing novel therapeutic strategies by stimulating their innate immunity.

Bouaziz et al, J Invest Dermatol, 2005
NK lysis of tumor cells is enhanced via an ADCC mechanism

Alemtuzumab

Bouaziz et al, J Invest Dermatol, 2005
Sezary patients NK cells are able to degranulate

- Sezary NK cells are able to degranulate perforin and granzymes against a HLA-Cl.I-negative target.
- NKG2D activates Sezary NK cells.

⇒ Sezary patients NK cells are - fully functional
 - ready to kill NKG2D-L⁺ targets

Is it possible to develop a specific anti-KIR3DL2 Immunotherapy?

- Specific expression of KIR3DL2 by malignant T lymphocytes
- Circulating Sézary patients NK lymphocyte are functional
- Sézary T cell clones are sensible to Perforin/GrB lysis

Development of a therapeutic monoclonal antibody (Innate Pharma)
Portfolio of anti-KIR3DL2 mAbs

- mAbs binding to epitopes on all 3 Ig domains of KIR3DL2 were generated and all their epitopes were identified
- Epitopes (colored AA) bound correlate with distinctive properties (efficient killing of KIR3DL2\(^+\) cells, internalization of the molecule, inhibition of binding to HLA-class 1…)
- Based on preliminary efficacy data, the 3 most promising candidates were humanized

The 3 Ig domains of KIR3DL2 protein

Marie-Cardine A, Cancer Research 2014
Strategy for the generation and testing of anti-KIR3DL2 therapeutic antibodies

Immunization of Balb/c mice with KIR3DL2-Fc chimeric protein

Selection of KIR3DL2 specific mAb (n = 12)

Chimerization

Humanization

Binding properties
Functional assays

Candidate mAb: IPH4102

IPH4102 delineates Sézary cells

Marie-Cardine et al, Cancer Res, 2014
In vivo efficacy of IPH4102: experimental design

Day 1
- SCID mice
- 5x10⁶ Raji-KIR3DL2 (i.v.)

Day 2
- IPH4102 or IC (i.p.) 2 x per week

Clinical signs and weight

Day 1
- SCID mice
- 5x10⁶ Raji-KIR3DL2 (s.c.)

Day 15–17
- Tumour growth (up to 100 mm³)
- IPH4102 or IC 2 x per week

Tumour size and weight

IPH4102 promotes the survival of mice engrafted with KIR3DL2+ tumour cells

IPH4102 improves survival in a dose-dependent manner

Mice: SCID (n = 8)
RAJI-KIR3DL2: 5 M IV at D0
IPH4102: single IV admin. at D1
Read-out: survival
IPH4102 Efficacy ex vivo: Autologous ADCC Efficacy Results

- **mAb**: 10 µg/mL
- **Incubation time**: 4 – 6 hours
- **Read-out**: 7AAD incorporation
- **KIR3DL2 sites per cell**: 1,000 to 4,000
- **%KIR3DL2+ cells among CD4+**: > 85%
- **Total n = 15 patients**

Figure:

- **Patient #10**: IPH4102 as potent as alemtuzumab in ex vivo autologous ADCC assays

Source: Marie-Cardine A. *et al*, Cancer Res. 2014
KIR3DL2+ Mac2a and Mac2b ALCL lines are sensitive to ADCC mediated by IPH4102

a. IPH4102-induced antitumor cytolytic activity

b. IPH4102-induced NK cell activation
IPH4102-101 FIH Development

• Sept 2013-Sept 2014: Preclinical studies
• August 2014: Orphan Drug designation in the European Union for the treatment of CTCL
• Sept 2014-Sept 2015: Regulatory process
• 5 August 2015: ANSM approval for phase I trial in France
• 11 Sept 2015: FDA approval
• 21 Sept 2015: French ethics committee approval
IPH4102-101 STUDY DESIGN

- First-in-Human Phase I study of IPH4102
- Two-portion study:
 - Dose-escalation portion – 10 dose-levels
 - Cohort expansion portion, at the recommended dose determined in the dose-escalation – 2 CTCL subtypes (SS and tMF)
- Patient profile:
 - Relapsed/refractory (≥ 2 previous lines of systemic therapy) CTCL patients
 - For MF/SS patients: grade ≥ IB
- Centrally assessed expression of KIR3DL2 on tumors:
 - KIR3DL2-positivity on skin biopsies (and/or blood CD4+ T cells, if applicable), is required for eligibility
Objectives

• Primary objective: to assess safety & tolerability of increasing IV doses of single agent IPH4102 by:
 • characterizing the dose-limiting toxicities (DLT) and (S)AEs
 • identifying the MTD or Recommended Ph 2 Dose (RP2D)

• Secondary objectives:
 – To explore antitumor activity
 – To assess pharmacokinetics (PK) and immunogenicity

• Translational objectives, biomarker exploration:
 – To monitor the fate of KIR3DL2-expression cells in skin lesions, blood and lymph nodes (pharmacodynamics)
 – To monitor immune cell activation in blood and explore NK cell and macrophage infiltration in skin lesions
 – To assess Minimal Residual Disease (clonal Vβ chain)
 – To assess cytokine release
IPH4102-101 FIH Study Design

Study Design

- **Dose-escalation Part:** *accelerated 3+3 design*
 pts with KIR3DL2+ tumors
 all CTCL subtypes eligible

- **Cohort expansion Part:**
 same dose for all: RP2D
 pts with KIR3DL2+ tumors
 pre-selected CTCL subtypes

- The CTCL subtypes and number of pts will be adjusted based on the findings during the dose escalation phase

- **Recommended Phase II Dose (RP2D)**
 e.g. n = 10 tMF + 10 SS
Clinical sites (dose-escalation part):

- St Louis Hospital, Paris (M. Bagot)
- UMC Leiden, the Netherlands (M. Vermeer)
- Guy’s and St Thomas’ Hospital, London UK (S. Whittaker)
- Stanford U., CA, US (Y. Kim)
- MD Anderson, Houston, TX, US (M. Duvic)
- OSU, Columbus, OH, US (P. Porcu)
Unit 976 (Paris, France)
A. Bensussan
N. Thonnart
A. Marie-Cardine
L. Michel

Innate Pharma (Marseille, France)
H. Sicard
N. Viaud
M. Bléry
C. Bonnafous
C. Paturel

Dept of Dermatology
St Louis Hospital, Paris, France
M. Bagot
C. Ram-Wolff

Dept of Immunology
H. Moins-Teisserenc
A. Toubert

Dept of Pathology
St Louis Hospital, Paris, France
M. Battistella
A. Janin

Financial supports