NOVEL CHECKPOINTS IN IMMUNO-ONCOLOGY

TARGETING CD39 AND CD73 TO IMPROVE ANTI-TUMOUR IMMUNE RESPONSES
FORWARD LOOKING STATEMENT

This document has been prepared by Innate Pharma S.A. (the “Company”) solely for the purposes of a presentation to investors concerning the Company. This document is not to be reproduced by any person, nor to be distributed.

This document contains forward-looking statements. Although the Company believes its expectations are based on reasonable assumptions, these forward-looking statements are subject to various risks and uncertainties, which could cause the Company’s actual results or financial condition to differ materially from those anticipated. Please refer to the risk factors outlined from time to time in the Company’s regulatory filings or publications.

This document contains data pertaining to the Company’s potential markets and the industry and environment in which it operates. Some of this data comes from external sources that are recognized in the field or from Company’s estimates based on such sources.

The information contained herein has not been independently verified. No representation, warranty or undertaking, express or implied, is made as to, and no reliance should be placed on, the fairness, accuracy, completeness or correctness of the information or opinions contained herein. The Company is under no obligation to keep current the information contained in this presentation and any opinion expressed is subject to change without notice. The Company shall not bear any liability whatsoever for any loss arising from any use of this document or its contents or otherwise arising in connection therewith.

Please refer to the Document de Référence filed with the Autorité des Marchés Financiers (“AMF”) on March 31st, 2017, available on the AMF’s website (www.amf-france.org) and on the Company’s website (www.innate-pharma.com). Such documents may not be necessarily up to date.

This document and the information contained herein do not constitute an offer to sell or a solicitation of an offer to buy or subscribe to shares of the Company in any country.
ATP/ADENOSINE PATHWAY
TARGETING IMMUNOSUPPRESSIVE TUMOR MICROENVIRONMENT

ATP : adenosine triphosphate
AMP : adenosine monophosphate
CD39 AND CD73 EXPRESSION ON HEALTHY DONOR IMMUNE CELLS

CD39+ proportion

CD73+ proportion
CD39 EXPRESSION IN CANCER TISSUE

- CD39 can be expressed on tumor infiltrating cells, stromal cells or on tumor cells
CD39 IS OVER EXPRESSED ON TUMOR INFILTRATING CELLS

CRC Cancer
(Khaja 2017)

H&N Cancer
(Lechner 2017)

Breast and Ovarian Cancer
(Gourdin, in Revision)

Melanoma
(Bonnefoy)
CD73 EXPRESSION IN CANCER TISSUE

- CD73 is frequently expressed in Tumor tissues (for Review, see Wang 2017, Oncotarget; Antonioli 2016, Trends Cancer): on tumor cells, endothelial cells, as well as on lymphocytes (mostly B cells in TLS)
- CD73 expression is correlated with bad prognosis (Wang, 2017; Gao, 2014)
- CD73 is not upregulated on tumor immune infiltrating T cells

NSCLC (IPH)

CRC (IPH)

Breast and Ovarian Cancer
(Gourdin, in Revision)

Melanoma
(Bonnefoy)
ATP/ADENOSINE PATHWAY
TARGETING IMMUNOSUPPRESSIVE TUMOR MICROENVIRONMENT

ATP: adenosine triphosphate
AMP: adenosine monophosphate

T reg, B Cell, Myeloid Cell

CD39

P2X receptor

Dendritic cell

B cell, CD4 T cell
Naïve CD8 T cell

NK cell

Tumor depletion

Activation

Immunosuppression

CD73

Anti-CD73

Anti-CD39

ATP

Adenosine

innate pharma
ANTI-CD73 AB IMPROVES ICI ANTI-TUMOR EFFICACY

Anti-moCD73 TY/23, in CD73+ MC38 models (Allard, 2013)
CD39 DELETION IMPROVES ICI ANTI-TUMOR EFFICACY

B16 model

MCA205 model

IC treated mice

- **B16 model**
 - WT: 6/10
 - KO: 6/10

- **MCA205 model**
 - WT: 0/10
 - KO: 0/10

Anti PD1 treated mice

- **B16 model**
 - WT: 0/20
 - KO: 0/20

- **MCA205 model**
 - WT: 0/20
 - KO: 4/20

Anti CTLA4 treated mice

- **B16 model**
 - WT: 0/20
 - KO: 0/20

- **MCA205 model**
 - WT: 6/10
 - KO: 6/10
CD39 DELETION IMPROVES CHEMOTHERAPY + ANTI-PD1 ANTI-TUMOR EFFICACY

MCA205 model

IC treated mice
- WT: 0/10
- KO: 0/10

Oxa Treated mice
- WT: 0/10
- KO: 0/10

Anti PD1 treated mice
- WT: 0/10
- KO: 0/10

Oxa + Anti PD1 treated mice
- WT: 6/10
- KO: 9/10

CR
- WT: 8/10
- KO: 10/10

Days post-graft

Tumor growth (mm²)

Graphs showing the tumor growth over days post-graft for different treatments and genotypes.
LEAD ANTI-CD73 AB INHIBITS SOLUBLE AND MEMBRANE CD73 ENZYME ACTIVITY, WITH NO CD73 DOWN MODULATION

Blocking of soluble rec CD73 activity

Down-modulation of membrane CD73

Blocking of cellular CD73 activity
LEAD ANTI-CD73 AB RESTORE IMMUNE RESPONSE IN THE PRESENCE OF AMP OR ATP

T cell proliferation assay

Allogeneic MLR
COMPARISON OF IPH ANTI-CD73 LEAD AB WITH MEDIMMUNE AND BMS ANTI-CD73 ABS

Blocking of soluble rec CD73 activity

Down-modulation of membrane CD73 activity

Blocking of cellular CD73 activity
LEAD ANTI-CD39 AB BINDS CD39 WITH HIGH AFFINITY AND SPECIFICITY

Binding to recombinant soluble CD39 and CD39-like proteins in ELISA

![Graphs showing binding of anti-CD39 to recombinant soluble CD39 and CD39-like proteins in ELISA.](image-url)
LEAD ANTI-CD39 AB INHIBITS SOLUBLE AND MEMBRANE CD39 ENZYME ACTIVITY

Blocking of soluble rec CD39 activity

Blocking of cellular CD39 activity

Binding to membrane CD39 in Flow Cytometry

Ramos (CD39+)

Ramos

\[\text{Luminescence Units} \]

\[\text{Ab (µg/ml)} \]

\[\text{ATP} \]

\[\text{Ramos (CD39+)} \]

\[\text{Median of Flu} \]

\[\text{Ab (µg/ml)} \]

\[\text{Luminescence Units} \]

\[\text{Ab or ARL (µM)} \]

\[\text{Anti-CD39, IC, ARL} \]
LEAD ANTI-CD39 AB RESTORE IMMUNE RESPONSE IN THE PRESENCE OF ATP

T cell proliferation assay

DC activation

- CD4 T cells
- CD8 T cells

Ab (µg/ml)

Proliferating T Cells (%)
CONCLUSION ON ANTI-CD39 AND ANTI-CD73 AB IPH PROGRAMS

IPH52
Anti-CD39

- Humanized Fc-silent IgG1 antibody
- Unique Ab blocking membrane and soluble CD39
- *In vitro* evidence of blockade of Adenosine suppression and increase of ATP stimulation
- *In vivo* POC in KO mice with PD-1, CTLA-4 and chemotherapy
- Evidence of CD39 up-regulation on TILs in patients

IPH53
Anti-CD73

- Humanized Fc-silent IgG1 antibody
- Blocking membrane and soluble CD73, no receptor down modulation
- Differentiated and superior *in vitro* to MEDI and BMS Phase I Abs
- Target validated in preclinical models
- CD73 expression on tumor cells is of bad prognosis

In conclusion, our results warrant the development of both therapeutic blocking anti-CD39 and anti-CD73 mAb targeting the tumor microenvironment.
The research leading to anti-CD73 results has received funding from the European Community’s Seventh Framework Program ([FP7/2007-2013] under grant agreement n°602200.

ACKNOWLEDGMENTS

IPH
Ivan Perrot
Séverine Augier
Marc Giraudon Paoli
Diana Jecko
Nicolas Gourdin
Ariane Morel
Rachel Courtois
Stephane Delahaye
Nicolas Fuseri
Caroline Denis
Cécile Bonnafous
Thibault Barbier
Laetitia Cohen-Tannoudji
Romain Remark
Agnes Represa
Sophie Ingoure
Benjamin Rossi
Stéphanie Cornen
Laurent Gauthier
Yannis Morel

CLB
Christophe Caux
Christine Ménétrier-Caux
Nicolas Gourdin
Lars Peter Jordheim
Serge Lebecque
Toufic Renno
Sylvie Lantukjoul
Isabelle Treilleux

LICR/CHUV
Pedro Romero
Selena Vigano
Laurence De Leval
Ines De Paula Costa Monteiro

UTU
Sirpa Jalkanen
Gennady Yegutkin

UTHSCSA
Tyler Curiel

PolyGene
Doron Shmerling

Ayming
Aurore Niemiec

OREGA
Aurelie Docquier
Cécile Déjou
Nathalie Bonnefoy
Jeremy Bastid