THE INNATE IMMUNITY COMPANY

NEXT GENERATION IMMUNOTHERAPIES: NK CELLS AND OTHER TARGETS

STEPHANIE CORNEN
5TH IMMUNOTHERAPY OF CANCER CONFERENCE (ITOC5) MARCH 2018
FORWARD LOOKING STATEMENT

This document has been prepared by Innate Pharma S.A. (the “Company”) solely for the purposes of a presentation to investors concerning the Company. This document is not to be reproduced by any person, nor to be distributed.

This document contains forward-looking statements. Although the Company believes its expectations are based on reasonable assumptions, these forward-looking statements are subject to various risks and uncertainties, which could cause the Company’s actual results or financial condition to differ materially from those anticipated. Please refer to the risk factors outlined from time to time in the Company’s regulatory filings or publications.

This document contains data pertaining to the Company’s potential markets and the industry and environment in which it operates. Some of this data comes from external sources that are recognized in the field or from Company’s estimates based on such sources.

The information contained herein has not been independently verified. No representation, warranty or undertaking, express or implied, is made as to, and no reliance should be placed on, the fairness, accuracy, completeness or correctness of the information or opinions contained herein. The Company is under no obligation to keep current the information contained in this presentation and any opinion expressed is subject to change without notice. The Company shall not bear any liability whatsoever for any loss arising from any use of this document or its contents or otherwise arising in connection therewith.

Please refer to the Document de Référence filed with the Autorité des Marchés Financiers (“AMF”) on March 31st, 2017, available on the AMF’s website (www.amf-france.org) and on the Company’s website (www.innate-pharma.com). Such documents may not be necessarily up to date.

This document and the information contained herein do not constitute an offer to sell or a solicitation of an offer to buy or subscribe to shares of the Company in any country.
THE IMMUNO-ONCOLOGY (IO) REVOLUTION

Immune Checkpoint Inhibitors
- anti-CTLA4
- anti-PD1
- anti-PD-L1
WHAT’S NEXT IN IO?

- Increase the fraction of patients sensitive to IO treatments
- Understand the acquired resistance to Immune Checkpoint Inhibitors
- Decrease toxicity

Identify new targets (cells and molecules)
Identify biomarkers
THE IMMUNE SYSTEM

INNATE IMMUNITY

- Neutrophils
- Eosinophils
- Basophils
- Mastocytes
- Innate lymphoid cells Groups 1, 2, 3
- Dendritic cells
- Monocytes
- Macrophages
- NK cells
- Naïve B&T cells

ADAPTATIVE IMMUNITY

- Effecter response
 - Hours
 - Whole body
- Innate immunity
 - Days
 - From lymphoid organs

CHALLENGES
- Microbial infections
- Tumors
NEXT GENERATION IO

3 STRATEGIC KEY PILLARS TO HARNESS THE POTENTIAL OF IMMUNITY

1. NK cells checkpoints (NKCP)
2. Tumor targeting (TAg)
3. Tumor Microenvironment (TME)
INNATE PHARMA – PIPELINE
FIRST-IN-CLASS IO ASSETS

<table>
<thead>
<tr>
<th>Target Discovery</th>
<th>Drug Discovery</th>
<th>Preclinical</th>
<th>Dose finding</th>
<th>Signal detection</th>
<th>Pivotal</th>
</tr>
</thead>
<tbody>
<tr>
<td>~20 targets or concepts under exploration</td>
<td>Anti-Siglec-9</td>
<td>IPH52 Anti-CD39</td>
<td>IPH5401 Anti-C5aR</td>
<td>Monalizumab Anti-NKG2A</td>
<td>Lirilumab Anti-KIR2DL1,2,3</td>
</tr>
<tr>
<td>SAN-NKCE-2</td>
<td>SAN-NKCE-2</td>
<td>IPH53 Anti-CD73</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other undisclosed targets</td>
<td>Other undisclosed targets</td>
<td>IPH4301 Anti-MICA/B</td>
<td></td>
<td></td>
<td>IPH4102 Anti-KIR3DL2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>IPH61 SAN-NKCE-1</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

~20 targets or concepts under exploration
ANTI-NKG2A IS A NOVEL IMMUNE CHECKPOINT INHIBITOR IN CANCER

- Monalizumab (IPH2201) is a first-in-class anti-NKG2A humanized blocking antibody.
NKG2A / HLA-E PATHWAY IS UPREGULATED IN TUMORS

HLA-E on tumor cells

Healthy Tissue

Tumor

Head & Neck Ovary Endometrium

NKG2A on TILs

Percentage of patients

- H&N (n=20)
- Ovary (n=40)
- Endometrium (intratumoral) (n=40)
- Endometrium (stroma) (n=40)
- Cervix (intratumoral) (n=16) (*)
- Cervix (stroma) (n=15) (*)
- Colorectal & hepatic meta (intratumoral) (n=47)
- Colorectal & hepatic meta (stroma) (n=47)

* underestimated because of few stroma in 5 tumors

- Score 3: > 76% positive cells
- Score 2: from 34 to 66% positive cells
- Score 1: between 1 and 33% positive cells
- Score 0: No positive cells

André et al. unpublished
NKG2A/Q\(_A\)-1\(^b\) CONTROL TUMOR GROWTH

Individual A20 and A20 Qa-1\(^b\) KO tumor growth after sub-cutaneous engraftment of 5x10\(^6\) A20 tumor cells (n=10) in BALB/C mice.

TF: Tumor Free, CR: Complete Regression

André et al. unpublished
Expression of NKG2A and PD-1 on isolated CD8+ TILs (day 20) A20 B cell lymphoma into BALB/C mice

André et al. unpublished
NKG2A BLOCKADE INCREASES PD-L1 ANTI-TUMORAL EFFICACY

RMA-Rae1 into B6 mice

P=0.03 (*), P=0.0006 (***)
Grehan-Breslow-Wilcoxon test

André et al. unpublished
MONALIZUMAB – JOINT CLINICAL DEVELOPMENT PLAN

FOCUS ON COMBINATIONS

<table>
<thead>
<tr>
<th>AZ-MedImmune</th>
<th>Innate Pharma</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ovarian</td>
<td>Single agent dose ranging study</td>
</tr>
<tr>
<td>CRC</td>
<td></td>
</tr>
<tr>
<td>NSCLC</td>
<td></td>
</tr>
<tr>
<td>Endometrial</td>
<td></td>
</tr>
<tr>
<td>Monalizumab + Durvalumab</td>
<td>SCCHN</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>NSCLC</th>
<th>SCCHN</th>
<th>CLL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Monalizumab + Durvalumab</td>
<td>Monalizumab + Cetuximab</td>
<td>Monalizumab + Ibrutinib</td>
<td></td>
</tr>
</tbody>
</table>

AZ-MedImmune
- Ovarian
- CRC
- NSCLC
- Endometrial
- Monalizumab + Durvalumab

Innate Pharma
- Single agent dose ranging study
- SCCHN
- CLL
- Monalizumab + Cetuximab
- Monalizumab + Ibrutinib
INNATE PHARMA – PIPELINE
FIRST-IN-CLASS IMMUNO-ONCOLOGY (IO) ASSETS

<table>
<thead>
<tr>
<th>Target Discovery</th>
<th>Drug Discovery</th>
<th>Preclinical</th>
<th>Dose finding</th>
<th>Signal detection</th>
<th>Pivotal</th>
</tr>
</thead>
<tbody>
<tr>
<td>~20 targets or concepts under exploration</td>
<td>Anti-Siglec-9</td>
<td>IPH52 Anti-CD39</td>
<td>IPH5401 Anti-C5aR</td>
<td>Monalizumab Anti-NKG2A</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SAN-NKCE-2</td>
<td>IPH53 Anti-CD73</td>
<td></td>
<td>Lirilumab Anti-KIR2DL1,2,3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Other undisclosed targets</td>
<td>IPH4301 Anti-MICA/B</td>
<td></td>
<td>IPH4102 Anti-KIR3DL2</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>IPH61 SAN-NKCE-1</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
ATP/ADENOSINE PATHWAY

ATP → AMP → Adenosine

Tumor cells

B cells, naïve CD8+ T, endothelial cells

Treg, B, myeloid, endothelial cells

Soluble CD39

CD39

CD73

Dendritic cell

NK cell

CD8 or CD4 T cell

A2A and A2B receptors

Immuno suppression

B cells, naïve CD8+ T, endothelial cells

Tumor cells

Soluble CD39

CD39

CD73

A2A and A2B receptors

Immuno suppression
BLOCKING ANTI-CD39 (IPH52) AND ANTI-CD73 (IPH53) ABS TO RESTORE ANTI-TUMOR IMMUNITY

Tumor cells

B cells, naïve CD8+ T, endothelial cells

Breg, B, myeloid, endothelial cells

CD39/CD73 Blockade

Reverse immunosuppression

A2A and A2B receptors

Dendritic cell

NK cell

CD8 or CD4 T cell
BLOCKING ANTI-CD39 (IPH52) AND ANTI-CD73 (IPH53) ABS TO RESTORE ANTI-TUMOR IMMUNITY

Reverse immunosuppression
Activate dendritic cells

CD39/CD73 Blockade

B cells, naïve CD8+ T, endothelial cells

Treg, B, myeloid, endothelial cells

IPH52
Soluble CD39

CD39/CD73

IPH53
CD73

NK cell
CD8 or CD4 T cell

CD39/CD73

Dendritic cell

ATP

Tumor cells

P2X receptors
CD39 EXPRESSION IN HEAD AND NECK TUMORS

CD39 expression on endothelial cells and immune cells

<table>
<thead>
<tr>
<th>% among</th>
<th>CD39+</th>
<th>CD39+PD-1+</th>
</tr>
</thead>
<tbody>
<tr>
<td>CD4+ T cells</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CD4+ Treg</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CD8+ T cells</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CD56^{dim} NK cells</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Perrot, Paturel, Bonnefoy et al. unpublished
CD39 DELETION IMPROVES ICI ANTI-TUMOR EFFICACY

B16 model

IC treated mice

WT: 6/10
KO: 6/10

Anti PD1 treated mice

WT: 0/20
KO: 0/20

MCA205 model

IC treated mice

WT: 0/10
KO: 0/10

Anti CTLA4 treated mice

WT: 0/20
KO: 4/20

WT: 6/10
KO: 6/10
IPH52 (a-CD39) REVERSES ATP-MEDIATED T CELL SUPPRESSION IN VITRO

Perrot, Paturel, Bonnefoy et al. unpublished
IPH52 (a-CD39) ENHANCES ATP-DEPENDENT DC ACTIVATION

Perrot, Paturel, Bonnefoy et al. unpublished
BLOCKING ANTI-CD73 (IPH53) ABS TO RESTORE ANTI-TUMOR IMMUNITY

Tumor cells

CD39

Soluble CD39

ATP

AMP

Adenosine

B cells, naïve CD8⁺ T, endothelial cells

Treg, B, myeloid, endothelial cells

Block immunosuppression

A₂A and A₂B receptors

Dendritic cell

NK cell

CD8 or CD4 T cell

Block immunosuppression
CD39 AND CD73 EXPRESSION IN HEAD AND NECK TUMORS

CD39 expression on vascular endothelial cells and immune cells

CD73 expression on vascular endothelial cells, immune and tumor cells

Perrot, Paturel, Bonnefoy et al. unpublished
IPH53 (a-CD73) IS MORE POTENT THAN COMPETITION ABS TO REVERSE AMP-MEDIATED T CELL SUPPRESSION

This program is developed within the TumAdoR project (www.tumador.eu), coordinated by Dr C. Caux (Centre Léon Bérard and Centre de Recherche en Cancérologie, Lyon, France), and funded under the European Community’s seventh framework Program (European Community’s Seventh Framework Program (FP7/2007-2013) under grant agreement n°602200).

Perrot, Paturel, Bonnefoy et al. unpublished
BLOCKING ANTI-CD39 (IPH52) AND ANTI-CD73 (IPH53) ABS TO RESTORE ANTI-TUMOR IMMUNITY

Block immunosuppression

Activate dendritic cells

Tumor cells

B cells, naïve CD8+ T, endothelial cells

Treg, B, myeloid, endothelial cells

Soluble CD39

CD39

CD73

Soluble CD73

IPH52

+

IPH53

NK cell

CD8 or CD4 T cell

Dendritic cell

P2X receptors
CD39/CD73 BLOCKADE SYNERGIZE TO REVERSE ATP-MEDIATED T CELL SUPPRESSION

CD4+ T cells

- CD39+CD73
- CD39
- CD73
- ATP
- CD3 + CD28
- No activation

Proliferating T cells (%)
CONCLUSION ON ANTI-CD39 AND ANTI-CD73 AB IPH PROGRAMS

IPH52 (Anti-CD39)
- Humanized Fc-silent IgG1 antibody
- Unique Ab blocking membrane and soluble CD39
- *In vitro* evidence of blockade of Adenosine suppression and increase of ATP stimulation
- *In vivo* POC in KO mice with PD-1, CTLA-4 and chemotherapy
- Evidence of CD39 up-regulation on TILs in patients

IPH53 (Anti-CD73)
- Humanized Fc-silent IgG1 antibody
- Blocking membrane and soluble CD73, no receptor down modulation
- Differentiated and superior *in vitro* to MEDI and BMS Phase I Abs
- Target validated in preclinical models
- CD73 expression on tumor cells is of bad prognosis

In conclusion, our results warrant the development of both therapeutic blocking anti-CD39 and anti-CD73 mAb targeting the tumor microenvironment.
ACKNOWLEDGMENTS

Séverine Augier
Marc Giraudon Paoli
Diana Jecko
Nicolas Gourdin
Rachel Courtois
Clarisse Caillet
Thomas Arnoux
Violette Breso
Elodie Bonnet
Caroline Denis
Caroline Soulas
Romain Remark
Sophie Ingoure
Stéphanie Chanteux
Benjamin Rossi
Pascale André
Mathieu Blery
Cécile Bonnafous
Laurent Gauthier
Ariane Morel
Robert Zerbib
Ivan Perrot
Carine Paturel
Yannis Morel
Eric Vivier

CLB
Christophe Caux
Christine Ménétrier-Caux

The research leading to anti-CD73 results has received funding from the European Community’s Seventh Framework Program ([FP7/2007-2013] under grant agreement n°602200.

OREGA Biotech

Aurelie Docquier
Cécile Déjou
Nathalie Bonnefoy
Jeremy Bastid

Institut Curie

O. Lantz