Natural Killer Cell Engagers
Disclosure

• Innate Pharma
• Co-founder + CSO
Today’s presentation

• The cancer innate immunity cycle
• What’s Next? Natural Killer Cell Engagers
 • First generation: NKCE3
 • NKCE3 to NKCE4, new data from next generation technology
• The ANKET™ platform
 Antibody-based NK cell engager therapeutics
A pivotal role of T cells in tumor immunity

References:
- Pages et al., NEJM, 2005
- Chen & Mellman, Immunity 2013
- Schumacher & Schreiber, Science 2015
- Sharma & Allison, Science 2015
- Chen & Mellman, Nature 2017
T cells are not autonomous in their anti-tumor functions
The cancer innate immunity cycle

Demaria et al., Nature 2019
Innate Lymphoid cells

Stimuli
- Tumors, intracellular microbes (Virus, bacteria, parasites)
- Large extracellular parasites and allergens
- Mesenchymal organizer cells (Retinoic acid, CXCL13, RANK-L)
- Extracellular microbes (Bacteria, fungi)

Mediators
- IFN-γ
- Granzymes
- Perforin
- IL-4
- IL-5
- IL-13
- IL-9
- AREG
- RANK
- Lymphotixin
- TNF
- IL-17
- IL-22
- IL-22
- IL-17
- GM-CSF
- Lymphotixin

Immune function
- **Type 1 immunity** (Macrophage activation, cytotoxicity)
- **Type 2 immunity** (Alternative macrophage activation)
- **Formation of secondary lymphoid structures**
- **Type 3 immunity** (Phagocytosis, antimicrobial peptides)

Vivier et al., Nature Immunol. 2008
Vivier et al., Science 2011
Vivier et al., Cell 2018
The cancer innate immunity cycle

Demaria, Gajewski, Vivier, SITC in press
Antibodies are great medicines

A. Mullard, Nature Reviews Drug Discovery 2021
Antibodies in cancer immunotherapy

Blocking antibodies
- e.g. anti-PD-(L)1 mAbs
- anti-NKG2A mAbs
- anti-TIGIT mAbs

Cytotoxic antibodies
- e.g. anti-CD20 mAbs
- anti-EGFR mAbs
- anti-HER2 mAbs

Antibody-dependent cell phagocytosis (ADCP)

Antibody-dependent cell cytotoxicity (ADCC)
Boosting cytotoxic antibodies against cancer
Boosting cytotoxic antibodies against cancer

Blocking mAbs: Anti-NKG2A mAbs (Monalizumab)

Gauthier & Vivier, Cell 2020

André et al. Cell 2018
Boosting cytotoxic antibodies against cancer

Agonist mAbs: NKp46 NK cell engagers
Gauthier et al. Cell 2019

Blocking mAbs: Anti-NKG2A mAbs
(Monalizumab)
André et al. Cell 2018
Trifunctional Natural Killer Cell Engagers (NKCE³)

Gauthier & Vivier, Cell 2019
Rationale for engaging NK cells through NKp46 1/3

NKp46 is expressed by all NK cells
Rationale for engaging NK cells through NKp46 2/3

NKp46 triggers potent signaling pathways

- NK cell activation +
 - cytotoxicity

- NK cell activation +++
 - cytotoxicity
 - cytokines and chemokines

Lanier et al., Nature Immunol 2008
Vivier et al., Science, 2004
Rationale for engaging NK cells through NKp46 3/3

NKp46 expression is conserved on tumor-infiltrating NK cells

Solid tumors
(HN, HCC, NSCLC, Urothelial RCC)
NKCE\(^3\): the first generation

Efficacy

- Activity in preclinical in vivo models
- Efficacy NKCE\(^3\) > approved benchmark antibodies in a cancer model in vivo

![Graph showing efficacy comparison between NKCE, Obinutuzumab, and PBS](image1)

Mode of Action

- Optimized killing activation by co-engagement of NKp46 and CD16
- Increased NK cell number in the tumor

![Images showing control and NKCE conditions](image2)

Gauthier et al., Cell 2019
From NKCE3 to NKCE4

NKCE3

NKCE4

Gauthier et al., Cell 2019
Rationale for including IL-2v in NKCE

Complementarity between ITAM and IL-2Rγ (γc) signaling pathways
IL-2v in NKCE⁴ format does not bind to IL-2Ra but still binds to IL-2Rb

CD25 (IL-2Rα)

CD122 (IL-2Rβ)
IL-2v is functional in NKCE4 format and limits Treg activation.

- **Cells:** PBMC from HD
- **Stimulation:** 20 min
- **Read-out:** STAT5 phosphorylation by flow cytometry
NKCE promotes specifically IL-2R activation on NK cells

- **Cells**: PBMC from HD
- **Stimulation**: 20 min
- **Read-out**: STAT5 phosphorylation by flow cytometry
Binding to CD16 and NKp46 is required for optimal IL-2R signaling by NKCE⁴

- Cells: PBMC from HD
- Stimulation: 20 min
- Read-out: STAT5 phosphorylation by flow cytometry

Cells:

- NKp46
- CD16
- IL-2R

Graph:

- x-axis: Concentration (nM)
- y-axis: pSTAT5 positive cells (%)
- y-axis: EC50 pSTAT5 (nM)

Legend:

- Green: NKp46
- Blue: CD16
- Orange: IL-2R

Statistical Tests:

- *p < 0.05
- **p < 0.01

Notes:

- EC50 values indicate the concentration at which half of the maximum effect is observed.
NKCE4 induces NK cell proliferation

- **Cells:** purified NK cells
- **Stimulation:** 5 days
- **Read out:** proliferation, CTV dilution

CTV dilution
NKCE induces cytokine production upon target engagement

- **Effector**: Freshly purified NK cells from HD
- **Target**: Raji B cell line
- **Incubation**: 4h with NKCE + Golgi Stop, E:T=0.5:1
- **Read out**: Intracellular FACS

Graphs:**

- **Left Graph**: IFN-γ+ NK cells
- **Right Graph**: MIP1β MedFI (on NK cells)

X-axis: Concentration (nM)
Y-axis: % IFN-γ+ NK cells for the left graph and MIP1β MedFI (on NK cells) for the right graph.
NKCE^4 induces cytokine production upon target engagement

- **Effector**: purified NK cells from HD
- **Target**: Raji B cell line
- **Read out**: Calcein release assay, 4h, E:T=10:1
NKCE4 induces potent cytotoxicity by mouse NK cells

- **Effector**: purified NK cells from HD
- **Target**: Raji B cell line
- **Readout**: Calcein release assay, 4h, E:T=10:1

![Graph showing % Specific lysis against Concentration (nM)]

- **Concentration (nM)**: 10^-3, 10^-2, 10^-1, 10^0, 10^1, 10^2
- **% Specific lysis**:
 - 0, 20, 40, 60

Legend:
- Tag
- NKp46
- Fc
- IL-2v
- Obinutuzumab

Details:
- **Tag**: Tagged constructs
- **NKp46**: Natural Killer cell activation
- **Fc**: Immunoglobulin Fc domain
- **IL-2v**: Interleukin-2v
- **Obinutuzumab**: Monoclonal antibody

[28]
NKCE4 anti-tumor efficacy: solid tumor model

Model: Raji, 5×10^6 in matrigel, sc

Mice: CB17 SCID
CD20-NKCE⁴ is more potent than obinutuzumab

Model: Raji, 5x10⁶ in matrigel, sc
Mice: CB17 SCID
Mechanisms of NKCE⁴ anti-tumor efficacy. 1

NKCE⁴ induces accumulation of activated NK cells at the tumor bed

Model: Raji, 5x10⁶ in matrigel, sc

Mice: CB17 SCID or RAGko huNKp46Tg (immunodeficient)

Treatment: single injection 3 days before analysis
Mechanisms of NKCE^4 anti-tumor efficacy. 2

- **Model:** Raji, 5x10^6 in matrigel, sc
- **Mice:** CB17 SCID
- **NK depletion:** anti-asialo GM1, q1w
Mechanisms of NKCE⁴ anti-tumor efficacy. 3

Optimal efficacy requires all arms in a single NKCE⁴ molecule
NKCE4 anti-tumor efficacy: disseminated tumor model

- Model: huCD20-B16F10, 5x105, i.v.
- Mice: C57BL/6
- Treatment: D1
- Lung analysis: D13

Vehicle

Obinutzumab
CD20-NKCE4 induces circulating B cell depletion in NHP

UMAP whole blood NHP treated with CD20 NKCE4 0.5 mg/kg, n=4

![Graph showing B cell depletion over Days with different treatment groups: Vehicle, 0.05 mg/kg, 0.5 mg/kg.]

- **Pre-dose**
 - B cells
 - NK cells
 - Pre-dose Day7
 - 3. CD8 T cells
 - 4. CD4 T cells

- **Day7**
 - B cells (% of baseline) vs. Days
 - Vehicle
 - 0.05 mg/kg
 - 0.5 mg/kg
Absence of CD20-NKCE⁴ toxicity in NHP

Clinical data

- Behavioral scoring
- Body weight (kg)
- Rectal temperature (°C)
- Heart rate (bpm)
- Oxygen saturation (%SpO₂)

- Vehicle
- 0.05 mg/kg
- 0.5 mg/kg
Absence of CD20-NKCE4 toxicity in NHP

Biological data

- IFN-\(\gamma\) (ng/mL)
- IL-6 (ng/mL)
- IL-8 (ng/mL)
- TNF (ng/mL)
- MCP-1 (ng/mL)
- IL-10 (ng/mL)
- IL-6 (ng/mL)

Time Points:
- Day -7 pre-dose
- 2h
- 6h
- 24h
Absence of CD20-NKCE^4 toxicity in NHP

Biological data

- **IFN-γ (ng/mL)**
- **IL-6 (ng/mL)**
- **IL-8 (ng/mL)**
- **IL-10 (ng/mL)**
- **TNF (ng/mL)**
- **MCP-1 (ng/mL)**

CD20 TCE > 1 ng/mL

CD20 TCE > 5 ng/mL

CD20 TCE > 8 ng/mL

CD20 TCE > 10 ng/mL

CD20 TCE > 1.7 ng/mL

CD20 TCE > 500 ng/mL

MCP-1 = CCL2

Engelberts et al., EBioMedicine, 2020
Natural Killer cell engagers

• NKCE technology provides efficient engagement of NK cells against tumors

• NKCE engage NK cells through **NKp46**, the most NK cell-specific activating receptor

• Trifunctional NKCE\(^3\) **co-engage NKp46 and CD16 on NK cells** and a tumor antigen on cancer cells; this leads to potent NK cell activation, cytotoxicity and efficient control of tumor growth in various preclinical mouse models (Gauthier et al., *Cell*, 2019).

• NKCE\(^4\) also induce NK cell proliferation and in vitro cytolytic activity against malignant cells expressing the targeted antigen.

• NKCE\(^4\) have long PK and show in vivo anti-tumor efficacy in several preclinical tumor models
ACKNOWLEDGEMENTS

Anti-tumor immunity induced by tetrafunctional Natural Killer cell engagers armed with not-alpha IL-2 variant

Olivier Demaria, Laurent Gauthier, Marie Vetizou, Audrey Blanchard Alvarez, Guillaume Habif, Luciana Batista, Constance Vagne, Stéphanie Cornen, William Baron, Nourhène Belaïd, Mathilde Girard-Madoux, Cédric Cesari, Méloïde Caratini, Frédéric Bosco, Olivier Benac, Julie Lopez, Aurore Fénis, Barbara Carrette, Florent Carrette, Aurélie Maguer, Solène Jaubert, Audrey Sansaloni, Robin Letay-Drouet, Camille Kosthowa, Naouel Lovera, Arnaud Dujardin, Sivan Bokobza, Cécile Bonnafous, Sabrina Carpentier, Agnès Represa, Benjamin Rossi, Ariane Morel, Ivan Perrot, Yannis Morel