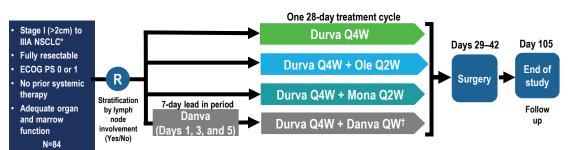


Platform study of neoadjuvant durvalumab (anti-PD-L1) alone or combined with oleclumab (anti-CD73), monalizumab (anti-NKG2A), or danvatirsen (anti-STAT3) in patients with resectable, early-stage non-small-cell lung cancer: pharmacodynamic correlates and ctDNA dynamics in the NeoCOAST study

<u>Jonathan Spicer</u>¹, Tina Cascone², Gozde Kar³, Ying Zheng⁴, Jorge Blando⁴, Tze Heng Tan⁵, Lin-Yang Cheng⁴, Ray Mager⁴, Oday Hamid⁴, Yee Soo-Hoo⁶, Patrick Forde⁷, Walter Weder⁸, Rosario Garcia-Campelo⁹, Italia Grenga¹⁰, Rakesh Kumar⁴, and Lara McGrath¹⁰

¹McGill University, Montreal, QC, Canada; ²The University of Texas MD Anderson Cancer Center, Houston, TX, USA; ³AstraZeneca, Cambridge, UK; ⁴AstraZeneca, Gaithersburg, MD, USA; ⁵AstraZeneca, Munich, Germany; ⁶AstraZeneca, Wilmington, DE, USA; ⁷Bloomberg–Kimmel Institute for Cancer Immunotherapy, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD, USA; ⁸Thoracic surgery, Clinic Bethanien, Zurich, Switzerland; ⁹Medical Oncology Unit, University Hospital A Coruña, A Coruña, Spain; ¹⁰AstraZeneca, Waltham, MA, USA.

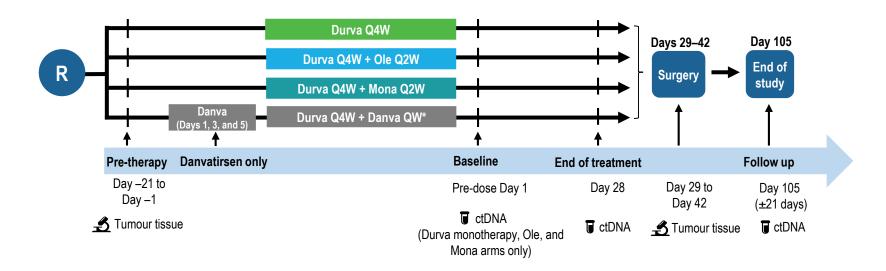
Declaration of interests


Jonathan Spicer, MD

- Speaker fees: AstraZeneca, Bristol Myers Squibb, Merck, and Novartis.
- Advisory board: AstraZeneca, Bristol Myers Squibb, Chemocentryx, Merck, Novartis, Protalix Biotherapeutics, and Roche.
- Research grants: AstraZeneca, CLS Therapeutics, Merck, Protalix Biotherapeutics, and Roche.

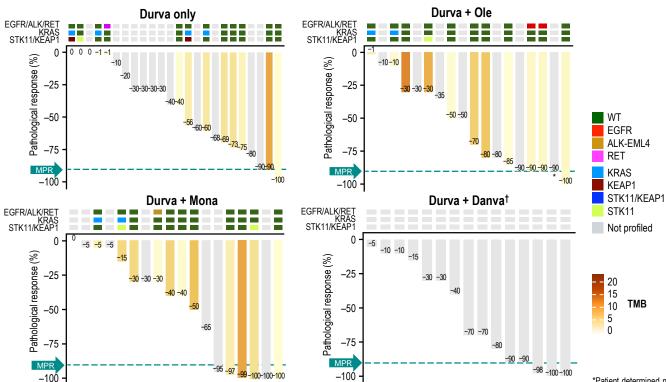
The study (NCT03794544) was sponsored by AstraZeneca.

NeoCOAST: Neoadjuvant durvalumab +/- novel agents in resectable, early-stage (I [>2cm] to IIIA) NSCLC



	Durva (n=27)	Durva + Ole (n=21)	Durva + Mona (n=20)	Durva + Danva (n=16)
Overall MPR (n/N, %)	3/27 (11%)	4/21 (19%)	6/20 (30%)	5/16 (31%)
PD-L1+	0/6 (0%)	2/5 (40%)	3/6 (50%)	0/2 (0%)
PD-L1-	0/3 (0%)	1/6 (16.7%)	0/2 (0%)	0/5 (0%)
PD-L1 NE	3/18 (17%)	1/10 (10%)	3/12 (25%)	5/9 (56%)

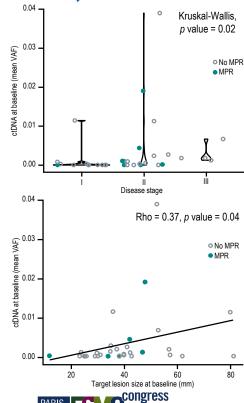
- Primary endpoint: MPR rate (proportion of patients with ≤10% residual viable tumour cells in resected tumour specimen and sampled nodes at surgery) per investigator assessment.
- A **single cycle of** neoadjuvant durva combined with ole, mona, or danva produced numerically improved MPR rates (19–31.3%) compared with durva alone (11.1%).¹
- MPR was associated with baseline tumour PD-L1 expression in durva + ole and durva + mona arms.

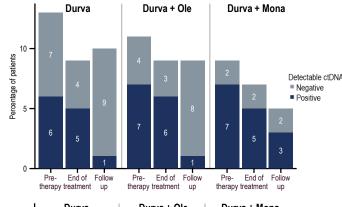

NeoCOAST: Translational assessments

 Blood and tumour samples were collected for exploratory translational analyses, including assessment of somatic tumour alterations and TMB, ctDNA dynamics, and gene expression profiling.

Pathological regressions at surgery, and association with somatic tumour alterations and TMB

- TMB and somatic tumour alterations were profiled from tumour DNA and matched blood DNA by whole exome sequencing[‡].
- TMB ranged 0.11–22.02 Mut/MB and was not correlated with percentage viable tumour cells at surgery (Rho: 0.19, p > 0.05).
- Among patients with an MPR,
 2 had EGFR driver mutations
 (both durva + ole arm).
- KRAS, STK11, RET and ALK alterations were most commonly observed in patients without an MPR.

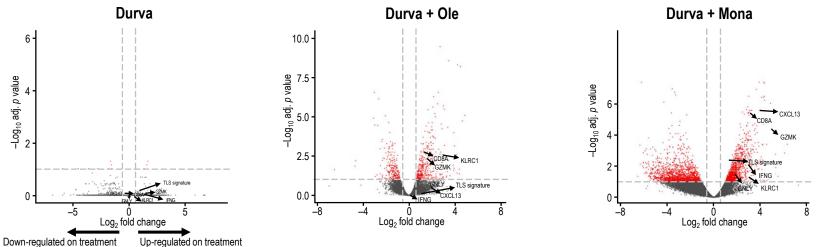

*Patient determined not to have MPR after local evaluation of primary tumour and lymph nodes


†Durva + danva analyses were limited as danva was stopped early and the program discontinued due to Sponsor decision

[‡]TMB and somatic alterations are from pre-therapy or surgery tumour tissue for patients with sufficient available tissue and/or DNA yield (N=34).

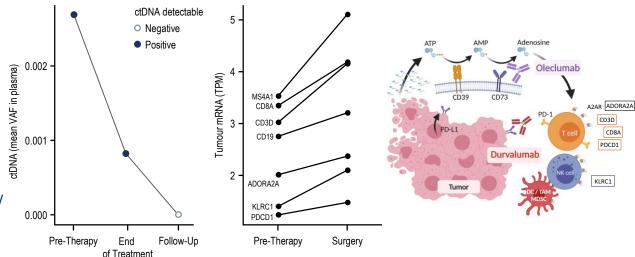
MPR, major pathological response; TMB, tumour mutational burden; WT, wild type..

Baseline ctDNA VAF was associated with disease stage and tumour size, on-treatment ctDNA reductions were observed



- ctDNA was profiled using a tumour-informed, personalized panel of genes tracked in longitudinal blood samples (Signatera).
 - ctDNA at baseline (mean VAF) was increased in patients with Stage II–III disease compared with Stage I, and higher in patients with larger tumours.
- Overall, the number of patients with detectable ctDNA in peripheral blood decreased at end of treatment and post-surgery, compared with baseline.
- Molecular responses by ctDNA (≥50% ΔVAF from baseline) were observed in 25–60% of patients per arm after treatment, and 75–100% post-surgery, and included patients without an MPR.

Evaluation of gene expression between tumours pre-therapy and at surgery reveals signatures of intratumoural immune activation



- Whole transcriptome RNA-sequencing was performed from tumour tissue collected pre-therapy and at surgery for all patients, where both samples were available.
- Expression of genes and gene signatures associated with NK cells (*KLRC1*, *GNLY*), CD8 T cells (*CD8A*, *GZMK*), cytotoxicity (*IFNG*, *GZMK*), tertiary lymphoid structures, and lymphocyte recruitment (*CXCL13*) demonstrated greater increases with durva + ole and durva + mona, than with durva alone.

Case study: patient treated with durva + ole with pharmacodynamic evidence of intratumoural immune activation

- Patient characteristics: 63F, former smoker, Stage IIB, squamous cell carcinoma.
- Stable disease by RECIST v1.1, 50% viable tumour cells at surgery.
- ctDNA dynamics revealed molecular response at end of treatment, and complete clearance post-surgery.
- Increased PD-L1+ TC and CD8 T-cell density at surgery compared with pre-therapy.
- As assessed by tumour mRNA, T and NK cell genes, adenosine A2a receptor, and B cell markers (MS4A1/CD20, CD19) increased at surgery compared with pre-therapy, consistent with mechanism of action of ole.

IHC Biomarker	Pre-therapy	Surgery	Δ
PD-L1+ TC (%)	20%	90%	↑350%
CD73+ TC (%)	0%	0%	0%
CD8 T cell density (#)	521	711	↑36%

Summary and conclusions

- A single cycle of neoadjuvant durva combined with ole, mona, or danva produced numerically improved MPR rates (19–31.3%) compared with durva alone (11.1%).
- Pathological regressions were not associated with TMB.
- Molecular responses by ctDNA were observed in 25–60% of patients per arm after treatment, and 75–100% of patients post-surgery, including those without an MPR.
- Pharmacodynamic responses by intratumoural mRNA show greater increases in immune activation genes with durva + ole and durva + mona than with durva alone.
- Further translational analyses of durva combined with ole or mona will be carried out as part of NeoCOAST-2 (NCT05061550), a Phase 2 study of neoadjuvant durva combined with chemotherapy and either ole or mona, followed by surgery and adjuvant durva plus ole or mona, in patients with resectable, Stage IIA–IIIA NSCLC.¹

Acknowledgements

- The authors would like to thank the patients, their families and caregivers, and all the investigators involved in this study.
- Editing support for the development of this presentation was provided by Connor Keating of Ashfield MedComms (Manchester, UK) an Inizio company, and funded by AstraZeneca.

