IPH4301, an antibody targeting MICA and MICB, exhibits potent cytotoxic activity and immunomodulatory properties for the treatment of cancer

Introduction

We have generated an anti-MICA/B antibody that neutralizes MICA/B on target cells. Chronic exposure upregulates MICA/B expression by some chemotherapies, radiotherapy and cytokines. Recently, MICA/B expression was described on non-associated immunosuppressive macrophages. Chronic exposure to membrane-bound MICA/B activates M2 macrophages (M2).

Mechanism of Action

1. **MICA-B cell MAb** has high affinity and crossreactivity to MICA and MICB allotypes
2. **MCMA-B expression is induced in numerous tumor types**
3. **Prevalence of MICA/B expression across tumor types**
4. **In vitro cytotoxicity**
 - IPH4301 mediates potent ADCC by reacting primary human NK cells
 - IPH4301 overcomes M2 macrophage suppression of NK cell activity
5. **In vitro immunomodulation**
 - IPH4301 blocks MICA/B-induced downmodulation of NKG2D on NK and CD8+ T cells and promotes their activation

Preclinical Evaluation

In vivo efficacy – TRAMP/Cb mouse model

- IPH4301 blocks MICA/B-induced downmodulation of NKG2D on NK and CD8+ T cells and promotes ADCC-mediated tumor cell lysis

Conclusion

- We have generated and characterized a pan-allocreactive anti-MICA/B antibody, IPH4301.
- IPH4301 efficiently mediates ADCC towards tumor target expressing various alleles of MICA or MICB.
- IPH4301-based ADCC overcomes M2 macrophage-induced NK cell and T cell suppression.
- MICA/B downregulation by chronic exposure to MICA/B is induced by primary non-associated macrophages. In addition, IPH4301 efficiently mediates ADCC towards M2 macrophages and induces ADCC-mediated tumor cell lysis.
- IPH4301 shows in vivo efficacy in immunodepressed mice. IPH4301-resistant tumors exhibit spontaneous anti-tumor immunity and primary mouse xenografts in TANMAME immunocompromised mice. IPH4301 eliminates slow tumor growth in syngeneic primary tumors. The development of a monoclonal antibody with immune regulation properties will be the subject of future studies.

References

A. Morel1, N. Vuadi1, C. Bonnafous2, S. Trichard1, A. Joulin-Giet1, S. Mizari1, G. Grondin1, N. Anceriz1, J. Zhang2, J. Jarzen2, J. Wu2, L. Cohen-Tannoudji1, Y. Morel1, B. Rossi1, C. Paturel1, R. Buffet1, L. Gauthier1, N. Wagtmann1, M. Bléry1

1. Innate Pharma, Marseille, France.
2. Medical University of South Carolina, Charleston, SC