NKG2A immune checkpoint blockade enhances the anti-tumor efficacy of PD-1/PD-L1 inhibitors in a preclinical model

Introduction

Monalizumab (IPH2201) is a novel, first-in-class humanized IgG4 targeting the immune checkpoint receptor NKG2A (Natural Killer Group 2A). NKG2A is expressed as a heterodimer with CD94 on the surface of subsets of cytotoxic lymphocytes: NK (Natural Killer) cells, $\gamma\delta$ T cells and tumor infiltrating CD8⁺ T lymphocytes. CD94-NKG2A is an inhibitory receptor specific for HLA-E (Human Leukocyte Antigen-E) in humans and orthologous Qa-1^b in mice. Upon ligand binding, CD94-NKG2A triggers inhibitory signaling that reduces NK and CD8+ T cell responses. HLA-E is frequently up-regulated on cancer cells of many solid tumors or hematological malignancies, protecting from killing by NKG2A⁺ immune cells. By blocking the binding of CD94-NKG2A to HLA-E, monalizumab leads to enhancement of NK and cytotoxic T cell responses.

Blocking the PD-1 pathway has proven efficient as anti-tumor therapy. Nevertheless many patients remain refractory to these therapeutics. Combination treatment with PD-1 blockers and mAb to a second checkpoint receptor, CTLA-4, have proven effective only for some patients, suggesting a need for combining with other checkpoint blockers.

Here, we tested the combination of NKG2A and PD-1 blockade in an *in vivo* model where A20 solid tumors were established in Balb/c mice.

Qa-1^b and PD-L1 are increased on A20 tumor infiltrating macrophages and monocytes

Mechanism of Action

Qa-1^b is induced on A20 cells in vitro by IFN-y and in vivo after engraftment in mice

Qa-1^b PD-L1 H-2K^d Medium 4823 21241 390 In vitro IFN-γ 822 39601 Εχ νίνο 51030

Expression of Qa-1^b, PD-L1 and H-2K^d (dark histograms) measured by flow cytometry A: after o/n stimulation with IFN- γ and B: day 19 post tumor cell engraftment.

Mean Fluorescence Intensity (MFI) is indicated in each histrogram.

innate pharma

#2342

Anti-NKG2A in vitro and in vivo efficacy

A: Anti-NKG2A increased degranulation by primary NKG2A⁺ NK cells against Qa-1^b expressing A20 tumor cells, measured by flow cytometry. Pool of 3 experiments, n=7. B: Anti-NKG2A mAb treatment induced NK cell-mediated anti-tumor efficacy in a prophylactic setting. Mice were randomized when tumor volumes \approx 70 mm³ (n=10-11/group) and treated 4 times (once a week) with IC, anti-NKG2A (200 µg, iv), or anti-asialo-GM1 (100 µL, ip) mAbs. Tumor volume was measured twice a week. Individual tumor volumes of one experiment.

NKG2A and PD-1 expression on A20 tumor infiltrating NK and CD8⁺ T cells

: Mice were euthanized at the indicated time points following tumor cells engraftment. NK and CD8⁺T cells analyzed by flow cytometry (n=3-6 mice/time point). Each symbol represents an individual mouse, black horizontal line represents mean value. B: Distributions of NKG2A

and PD-1 receptors were analyzed on day 22 (means of 6 mice).

Increased frequency of NKG2A⁺ PD-1⁺ CD8⁺ T cells in tumors of anti-PD-1 resistant mice

Mice treated with indicated mAbs (200 µg, ip, 3 times every 3-4 days) after tumor engraftment were sacrificed on days 21 and 28. CD8+T cells were characterized by flow cytometry. Means +/- SD of % NKG2A+ PD-1+ CD8+ among CD8⁺T cells. P<0.005 (***), P<0.0005 (****). N=3-6. % NKG2A⁺ NK cells among NK cells were not modified by anti-PD-1 treatment (data not shown).

C. Sola, T. Arnoux, F. Chanuc, N. Fuseri, R. Joly, B. Rossi,

Combined NKG2A and PD-1 blockade increases complete response rate and survival

Mice were randomized when tumor volumes ≈ 50 mm³ (n=10-11 mice/group) and treated 3 times (every 3-4 days) with IC, anti-NKG2A, anti- PD-1 or combination of both mAbs. NK or CD8⁺T cells were depleted by injection of antiasialo-GM1 or anti-CD8 mAbs (3 times, once a week). A: Individual tumor volumes of one experiment. B: Kaplan-Meier survival. Log Rank test, P<0.005 (***), P<0.0005 (****).

- NK cells.

L. Gauthier, C. Leget, C. Bonnafous, N. Wagtmann, Y. Morel, P. André

Innate Pharma, Marseille, France

Conclusion

NKG2A is expressed on tumor infiltrating

 NKG2A is induced on a subset of CD8⁺ cells that also expressed PD-1 and is further increased in PD-1 resistant mice.

NKG2A blockade delays A20 tumor growth.

Combination of PD-1 and NKG2A blockade results in significant anti-tumor responses, characterized by an increased frequency of complete tumor cell regression.

These data support the rationale for the clinical trial testing the combination with monalizumab and durvalumab (NCT02671435).

References

Sagiv-Barfi I et al. Therapeutic antitumor immunity checkpoint blockade is enhanced by ibrutinib, inhibitor of both BTK and ITK. PNAS, 2015

Zhu X et al. Progression of large lymphoma significantly impeded with a combination gemcitabine chemotherapy and dendritic cells intr tumor vaccination. Plos one, 2013

