Preclinical development of first-in-class antibodies targeting Siglec-9 immune checkpoint for cancer immunotherapy

O. Bénac1, M. Gaudin1, W. Out-Hammou4, H. Rispaud Blanc1, M. Ors1, E. Bonnet1, A. Maguer1, R. Letay-Drouet1, C. Soulas1, S. Chanteux1, R. Remak1, G. Habif1, M. Phelipot2, S. Blanchin2, F. Romagné2, A. Leroy3, M. Bléry1, C. Bonnafous1, A. Morel1, B. Rossi1, L. Gauthier1, C. Paturel1, E. Vivier1,4,5, Y. Morel1, I. Perrot1, S. Cornen1.

1-Innate Pharma, Marseille, France; 2-Mi-mAbs, Marseille, France; 3-Cancer Immunomonitoring platform, CRCCM, Inserm, U1068; Institut Paoli-Calmettes; Aix-Marseille Université, UM 105; CNRS, UMR7258, F-13005, Marseille, France; 4-Aix Marseille Univ, CNRS, INSERM, Centre d’Immunologie de Marseille-Luminy, Marseille, France, 5-Service d’Immunologie, Marseille Immunopole, Hôpital de la Timone, Assistance Publique des Hôpitaux de Marseille, Marseille, France.

Abstract

1. Discovery of first-in-class anti-Siglec-9 blocking antibodies

We discovered high affinity anti-Siglec-9 antibodies that block the interaction between Siglec-9 and its ligands. These antibodies potently enhance NK cell cytotoxicity by blocking interactions with sialic acid expressed on tumor target cells. We also show that anti-Siglec-9 antibodies improve anti-tumor response induced by the blockade of the immune checkpoint NKG2A. Using flow cytometry analyses, we show that Siglec-9 is expressed on several immune cell types including lymphocytes and myeloid cells pointing to potential multiple modes of action. Removal of sialic acid on monocyte-derived dendritic cells unblocks Siglec-9 suggesting interactions with self-sialic acids. Finally, we show that Siglec-9 expression is maintained on tumor-infiltrating immune cells using immunohistochemistry (IHC) and that Siglec-9 is upregulated on circulating T cells in cancer patients suggesting a potential role on adaptive immunity.

Proposed Mode of Action

1. **Siglec-9 is highly expressed on myeloid cells and upregulated on circulating T cells in cancer patients**

A. Siglec-9 is highly expressed on circulating myeloid cells

B. Tumor-infiltrating immune cells express Siglec-9

C. Siglec-9 interacts with self-sialic acids on moDCs

D. Siglec-9 is upregulated on circulating T cells in cancer patients

Conclusion

- New first-in-class anti-Siglec-9 antibodies block the interaction of Siglec-9 with its sialic acid ligands.
- Siglec-9 is an inhibitory receptor and its blockade enhances NK cell cytotoxicity.
- Siglec-9 blockade synergizes with other immune checkpoints blockade (e.g. NKG2A blockade)
- Large expression on multiple immune cell types including myeloid, NK and T cells in cancer patients points to potential multiple modes of actions.
- Taken together, these data support the development of anti-Siglec-9 blocking antibodies for cancer immunotherapy.